Standing Wave Demo: Slinky

00:03:38
https://www.youtube.com/watch?v=-k2TuJfNQ9s

الملخص

TLDRDie demonstrasie toon hoe transversale staande golwe en reisende transversale golwe werk. 'n Golwe begin deur 'n handbeweging te maak wat regte hoeke met die rigting van die golwe vorm, wat deur 'n veer beweeg. Wanneer die golwe 'n vaste objek ontmoet (Parker se hand), verander dit van 'n piek na 'n daling tydens refleksie. Die video verduidelik staande golwe, spesifiek die fundamentele mode (eerste harmonika) wat gekenmerk word deur die laagste frekwensie. Hoër frekwensies kom ooreen met daaropvolgende harmonika (tweede harmonika en derde harmonika), wat elkeen kenmerkende bewegingspatrone vertoon. Die verhouding tussen frekwensie en mode toon aan hoe verskillende vibrasiepaterns in 'n stringstelsel geskep kan word.

الوجبات الجاهزة

  • 👉 Transverse waves have motion perpendicular to direction of propagation.
  • 👉 Standing waves form from two waves of the same frequency interfering.
  • 👉 The first harmonic is the lowest frequency standing wave.
  • 👉 Higher harmonics correspond to higher frequencies and more segments.
  • 👉 Reflection of waves changes peaks to valleys upon hitting a firm surface.

الجدول الزمني

  • 00:00:00 - 00:03:38

    Die demonstrasie begin met die voorstelling van 'n aanhanger genaamd Parker wat 'n bewonderende gehoor aanspreek terwyl 'n transversale staande golf en 'n reisende golf gedemonstreer word. Die gespreksleier skep 'n storing deur hul hand op 'n manier te beweeg wat perpendicular is tot die golfbeweging. Hierdie beweging genereer 'n golf wat na Parker beweeg en dan weer terugkeert, terwyl dit 'n piek na 'n vallei omskakel wanneer dit Parker se hande tref. Die volgende deel van die demonstrasie verduidelik staande golwe, waar 'n frekwensie gekies word wat ooreenstem met die lengte van die tou om 'n staande golfpatroon te skep. Die laagste frekwensie, bekend as die fundamentele mode of die eerste harmoniese, word afgespeel, gevolg deur die tweede harmoniese wat die frekwensie verdubbel. Die gasheer demonstreer ook die derde harmoniese, en noem die bestaan van oneindig baie van hierdie golwe met elk 'n spesifieke frekwensie wat korrespondensie het tussen die golffases en die frekwensies, wat die konsep van staan golwe opsom.

الخريطة الذهنية

فيديو أسئلة وأجوبة

  • What is a transverse wave?

    A transverse wave is a wave in which the motion of the medium is perpendicular to the direction of the wave.

  • What is a standing wave?

    A standing wave is formed when two waves of the same frequency traveling in opposite directions interfere with each other, resulting in a wave pattern that appears to be stationary.

  • What are harmonics?

    Harmonics are the frequency components of a wave, where the fundamental frequency is the lowest and subsequent frequencies are integer multiples of this frequency.

  • What is the first harmonic?

    The first harmonic, also known as the fundamental mode, is the lowest frequency mode of vibration in a standing wave.

  • How are higher harmonics formed?

    Higher harmonics are formed by increasing the frequency, causing the wave to vibrate in additional segments or loops.

  • What happens when a wave hits a stationary object?

    When a wave hits a stationary object, it reflects and can transform from a peak to a valley, depending on the nature of the wave and the object.

  • Can standing waves occur in a string?

    Yes, standing waves can occur in a string when it vibrates at certain frequencies, creating distinct patterns.

  • What is the second harmonic?

    The second harmonic is the mode that corresponds to twice the frequency of the first harmonic.

  • What characterizes the third harmonic?

    The third harmonic has a frequency three times that of the fundamental frequency and exhibits three segments of vibration.

  • Are there more than three harmonics?

    Yes, there is theoretically an infinite number of harmonics that can exist.

عرض المزيد من ملخصات الفيديو

احصل على وصول فوري إلى ملخصات فيديو YouTube المجانية المدعومة بالذكاء الاصطناعي!
الترجمات
en
التمرير التلقائي:
  • 00:00:00
    okay for for this demonstration I have
  • 00:00:03
    my able assistant Parker Parker smile at
  • 00:00:06
    your admiring audience and uh we will be
  • 00:00:09
    demonstrating
  • 00:00:11
    transverse standing waves I'll also
  • 00:00:15
    demonstrate traveling uh transverse
  • 00:00:17
    waves here's a traveling wave I'm
  • 00:00:21
    starting the wave by creating a
  • 00:00:23
    disturbance here with my hand that is
  • 00:00:27
    perpendicular to the direction of
  • 00:00:28
    propagation of the way
  • 00:00:30
    so I'll move my hand up and down and
  • 00:00:33
    you'll see that the little bump in the
  • 00:00:36
    spring travels from me to Parker and
  • 00:00:39
    then back to me again and you notice
  • 00:00:44
    that when the wave hits Parker's
  • 00:00:47
    hands because hand he's holding it
  • 00:00:50
    firmly what was a peak heading toward
  • 00:00:53
    him converts itself into a valley as it
  • 00:00:57
    bounces off of his hands
  • 00:01:02
    so then a standing wave is where you
  • 00:01:06
    pick a frequency that matches the length
  • 00:01:09
    of the string in such a way that the the
  • 00:01:13
    waves created from my side of the string
  • 00:01:16
    and bouncing off of
  • 00:01:18
    Parkers um coincide with each other and
  • 00:01:21
    reinforce each other to create a
  • 00:01:23
    standing wave pattern the um lowest
  • 00:01:27
    frequency standing wave pattern is this
  • 00:01:29
    one
  • 00:01:30
    it's called mode M
  • 00:01:33
    o1 or the first harmonic or in other
  • 00:01:37
    words also called the fundamental mode
  • 00:01:41
    it's the lowest frequency mode that you
  • 00:01:44
    can get in a transverse standing
  • 00:01:48
    wave if I double the
  • 00:01:51
    frequency of that
  • 00:01:55
    mode I get the second harmonic or second
  • 00:02:00
    mode and sometimes called the first
  • 00:02:03
    overtone and this one if you'll notice
  • 00:02:06
    is going twice as fast as the
  • 00:02:09
    fundamental
  • 00:02:10
    mode it has a node that's exactly
  • 00:02:15
    halfway between Parker and me and that's
  • 00:02:18
    a node where where there's approximately
  • 00:02:21
    no motion going
  • 00:02:23
    on two one two so now I'm going to try
  • 00:02:27
    and triple the frequency and get a
  • 00:02:30
    standing wave pattern that coincides
  • 00:02:32
    with the third harmonic or second
  • 00:02:35
    overtone
  • 00:02:43
    um try
  • 00:02:52
    again okay I think I've got it
  • 00:02:54
    approximately
  • 00:02:56
    now I think I had it for a little while
  • 00:02:58
    there that's the third mode where the
  • 00:03:01
    where the string vibrates in three
  • 00:03:03
    separate
  • 00:03:05
    segments there's actually an infinite
  • 00:03:07
    number of these modes that you can get
  • 00:03:09
    and um see if I can get one of the
  • 00:03:11
    higher
  • 00:03:12
    modes I think that's
  • 00:03:15
    four and um and then if you're really
  • 00:03:18
    really good you can get five six 7 8
  • 00:03:22
    Etc so notice that with each mode
  • 00:03:26
    there's a particular frequency that I
  • 00:03:28
    have to vibrate at in order to pre
  • 00:03:30
    create that mode there a onetoone
  • 00:03:33
    correspondence between the modes and the
  • 00:03:35
    frequencies that's standing waves
الوسوم
  • transverse waves
  • standing waves
  • harmonics
  • first harmonic
  • second harmonic
  • third harmonic
  • Parker
  • wave reflection
  • fundamental mode
  • vibration