Quantum Computing Explained by a Retired Microsoft Engineer

00:10:04
https://www.youtube.com/watch?v=IzGJw6daRTw

الملخص

TLDRLa computació quàntica és un camp emergent que utilitza principis de la mecànica quàntica per processar informació de manera radicalment diferent a la computació clàssica. A través de cubits, que poden existir en múltiples estats gràcies a la superposició, i l'entrellaçament, que connecta cubits de manera instantània, els ordinadors quàntics poden resoldre problemes complexos de manera molt més ràpida. Aquesta tecnologia té el potencial de revolucionar àrees com la criptografia, la medicina, la intel·ligència artificial i l'optimització. Tot i que encara estem en les primeres etapes de la computació quàntica, els avenços són prometedors i podrien transformar la nostra societat en la pròxima dècada.

الوجبات الجاهزة

  • 🧠 La computació quàntica utilitza principis de la mecànica quàntica.
  • 💻 Els cubits poden ser 0, 1 o ambdues opcions alhora.
  • 🔄 La superposició permet múltiples estats simultanis.
  • 🔗 L'entrellaçament connecta cubits de manera instantània.
  • 🚀 Pot resoldre problemes complexos més ràpidament que els ordinadors clàssics.
  • 🔒 La criptografia es pot veure afectada per la computació quàntica.
  • 💊 Pot accelerar el desenvolupament de medicaments.
  • 🤖 Pot millorar la intel·ligència artificial i l'aprenentatge automàtic.
  • 📈 Pot optimitzar sistemes i processos en diverses indústries.
  • ⏳ S'espera que arribi al mercat principal durant la dècada de 2030.

الجدول الزمني

  • 00:00:00 - 00:05:00

    En aquest vídeo, s'introdueix el món de la computació quàntica, explicant que és fonamentalment diferent de la computació clàssica. La computació quàntica utilitza els principis de la mecànica quàntica per processar informació mitjançant cubits, que poden ser 0, 1 o ambdues coses alhora, gràcies a la superposició. Això permet que els ordinadors quàntics representin múltiples estats simultàniament, cosa que els permet resoldre problemes complexos molt més ràpidament que els ordinadors clàssics. S'explica com la superposició funciona amb una metàfora d'una moneda que gira, i com això afecta la capacitat de processar informació.

  • 00:05:00 - 00:10:04

    A més de la superposició, es presenta el concepte d'entrellaçament, on dos cubits es vinculen d'una manera que permet que treballin junts de manera més potent. La computació quàntica té el potencial de revolucionar àrees com la criptografia, la medicina, la intel·ligència artificial i l'optimització de sistemes. Tot i que la computació quàntica encara està en les seves primeres etapes, les inversions de grans empreses i els avenços en la tecnologia estan accelerant el seu desenvolupament. El vídeo conclou amb una visió optimista sobre el futur de la computació quàntica i el seu potencial per resoldre problemes que actualment semblen insuperables.

الخريطة الذهنية

فيديو أسئلة وأجوبة

  • Què és la computació quàntica?

    La computació quàntica utilitza principis de la mecànica quàntica per processar informació de manera diferent a la computació clàssica.

  • Quina és la diferència entre bits i cubits?

    Els bits són 0 o 1, mentre que els cubits poden ser 0, 1 o ambdues opcions alhora gràcies a la superposició.

  • Què és la superposició?

    La superposició és una propietat quàntica que permet als cubits existir en múltiples estats alhora.

  • Què és l'entrellaçament?

    L'entrellaçament és un fenomen on dos cubits es troben connectats de manera que el canvi en un afecta immediatament l'altre.

  • Quins són els avantatges de la computació quàntica?

    Pot resoldre problemes complexos més ràpidament que els ordinadors clàssics, com la criptografia i la simulació de molècules.

  • Quins són els reptes de la computació quàntica?

    La estabilitat dels cubits i la decoherència són grans reptes que cal superar per a la seva aplicació pràctica.

  • Quines aplicacions té la computació quàntica?

    Pot revolucionar la medicina, la intel·ligència artificial, l'optimització i la seguretat.

  • Quan podrem veure ordinadors quàntics a l'ús general?

    S'espera que els ordinadors quàntics arribin al mercat principal durant la dècada de 2030.

  • Què és l'algoritme de Grover?

    És un algoritme quàntic que millora la probabilitat de trobar la solució correcta en un conjunt de possibles solucions.

  • Què és l'algoritme de Shor?

    Un algoritme quàntic que pot desxifrar claus d'encriptació de manera molt més ràpida que els ordinadors clàssics.

عرض المزيد من ملخصات الفيديو

احصل على وصول فوري إلى ملخصات فيديو YouTube المجانية المدعومة بالذكاء الاصطناعي!
الترجمات
en
التمرير التلقائي:
  • 00:00:00
    Today, we're diving head first into the
  • 00:00:01
    mind-bending world of quantum computing.
  • 00:00:04
    And I know some of you are thinking,
  • 00:00:05
    "Quant computing? It just makes no
  • 00:00:07
    sense." But don't worry, cuz I'm here to
  • 00:00:08
    break it down into bite-sized, easy to
  • 00:00:10
    digest pieces that anybody can wrap
  • 00:00:12
    their head around. By the end of this
  • 00:00:14
    10-minute journey, you'll not only
  • 00:00:15
    understand what quantum computing is,
  • 00:00:17
    but also why it's set to flip the tech
  • 00:00:19
    world upside down. So, grab a coffee,
  • 00:00:21
    kick back, and let's embark on this
  • 00:00:23
    quantum adventure. But let's start with
  • 00:00:25
    the very basics. Quantum computing is a
  • 00:00:27
    totally different beast from the
  • 00:00:28
    classical computing that we're all used
  • 00:00:30
    to. The kind of computing that powers
  • 00:00:31
    your phone, your laptop, or that new
  • 00:00:33
    Thread Ripper desktop. At its heart,
  • 00:00:36
    quantum computing uses the principles of
  • 00:00:38
    quantum mechanics, the science of how
  • 00:00:40
    things behave at the tiniest scales,
  • 00:00:41
    like atoms and electrons, to process
  • 00:00:44
    information in ways that classical
  • 00:00:45
    computers could only dream of. So,
  • 00:00:47
    what's the big difference? Well, as you
  • 00:00:49
    know, classical computers use bits as
  • 00:00:51
    their building blocks. A bit is super
  • 00:00:53
    simple. It's either a zero or a one,
  • 00:00:55
    like an onoff switch. Everything your
  • 00:00:57
    computer does, from streaming this video
  • 00:00:59
    to running your favorite game, is built
  • 00:01:01
    on millions of those little zeros and
  • 00:01:02
    ones flipping back and forth. Quantum
  • 00:01:04
    computers, though, they use something
  • 00:01:06
    called cubits or quantum bits. And
  • 00:01:08
    here's where it gets weird. Unlike
  • 00:01:10
    regular bits, cubits can be a zero or a
  • 00:01:12
    one or both at the same time. You heard
  • 00:01:15
    that right, both at once. This magic
  • 00:01:17
    trick is thanks to a quantum property
  • 00:01:19
    called superposition. And it's the key
  • 00:01:21
    to why quantum computers have so much
  • 00:01:22
    potential. But before we get too far
  • 00:01:24
    ahead, let's unpack that idea a little
  • 00:01:26
    bit more. Whether you think of a cubit
  • 00:01:28
    as having no value at all or both values
  • 00:01:30
    or all possible values at the same time,
  • 00:01:32
    it doesn't really matter. What does
  • 00:01:34
    matter is how they actually respond to
  • 00:01:36
    algorithms. Now, to make superposition
  • 00:01:38
    less of a head scratcher, let's use an
  • 00:01:40
    analogy. Picture a coin. In the
  • 00:01:42
    classical world, you flip it and it's
  • 00:01:43
    either heads or tails. Simple, right?
  • 00:01:46
    Well, that's like a classical bit, a
  • 00:01:47
    zero or a one. One state at a time. Now
  • 00:01:50
    imagine that same coin in a quantum
  • 00:01:52
    world. Instead of landing on heads or
  • 00:01:53
    tails like when it's still spinning in
  • 00:01:55
    the air almost, it's representing both
  • 00:01:57
    heads and tails at the same time until
  • 00:01:59
    you stop and check it. And that's superp
  • 00:02:01
    position in a nutshell. A cubit can
  • 00:02:03
    exist in multiple states at once until
  • 00:02:05
    it resolves. Why does this matter? Well,
  • 00:02:07
    in a classical computer, you have let's
  • 00:02:09
    say three bits. So you can represent one
  • 00:02:11
    of eight possible combinations at a time
  • 00:02:13
    like 0 0 0 1 0 1 0 and so on. But with
  • 00:02:17
    three cubits in superp position, a
  • 00:02:19
    quantum computer can represent all eight
  • 00:02:21
    of those combinations simultaneously.
  • 00:02:23
    Add more cubits and the possibilities
  • 00:02:25
    explode exponentially. With just 300
  • 00:02:28
    cubits, a quantum computer could
  • 00:02:29
    represent more states than there are
  • 00:02:31
    atoms in the observable universe. Let
  • 00:02:33
    that sink in for a second because this
  • 00:02:35
    ability to handle multiple states at
  • 00:02:36
    once is what lets quantum computers
  • 00:02:38
    tackle insanely complex problems way
  • 00:02:40
    faster than classical machines. Imagine
  • 00:02:43
    that you had enough cubits to represent
  • 00:02:45
    a 256-bit encryption key. Theoretically,
  • 00:02:48
    since the cubits can represent all
  • 00:02:50
    possible states and combinations at the
  • 00:02:52
    same time, it's only a matter of
  • 00:02:53
    selecting the ones that resolve the
  • 00:02:55
    decryption key. Superposition allows a
  • 00:02:57
    quantum computer to process all possible
  • 00:02:59
    keys simultaneously. But there's still a
  • 00:03:01
    catch. When you measure the cubits, the
  • 00:03:03
    superposition collapses to a single
  • 00:03:05
    state, one key, with probability
  • 00:03:07
    proportional to its amplitude squared.
  • 00:03:09
    In a uniform superp position, each key
  • 00:03:12
    has an equal chance of being measured.
  • 00:03:13
    So a single measurement is really no
  • 00:03:15
    better than a random guess, which would
  • 00:03:17
    be equivalent to classically brute
  • 00:03:18
    forcing a key one at a time. To deduce
  • 00:03:21
    the correct key, you need a quantum
  • 00:03:23
    algorithm that amplifies the amplitude
  • 00:03:25
    of the correct keys state or otherwise
  • 00:03:27
    exploits quantum properties to somehow
  • 00:03:30
    identify it efficiently. Because without
  • 00:03:31
    going too deep into the weeds, the most
  • 00:03:33
    common algorithm is one known as
  • 00:03:34
    Grover's algorithm. And the basic idea
  • 00:03:36
    is to iteratively apply a series of
  • 00:03:38
    quantum operations that enhance the
  • 00:03:40
    probability of measuring the correct
  • 00:03:42
    key. It starts with a superposition of
  • 00:03:45
    all possible keys and then uses an
  • 00:03:46
    oracle to mark the correct key by
  • 00:03:48
    flipping its phase followed by a
  • 00:03:50
    diffusion step that amplifies its
  • 00:03:52
    amplitude. After roughly a number of
  • 00:03:54
    iterations equal to the square root of
  • 00:03:55
    the key size, the correct keys amplitude
  • 00:03:57
    is boosted enough that measuring the
  • 00:03:59
    cubits is likely to yield the right
  • 00:04:01
    answer, providing a quadratic speed up
  • 00:04:03
    over classical brute forcing. But superp
  • 00:04:05
    position is just one piece of the
  • 00:04:07
    puzzle. There's another quantum trick up
  • 00:04:09
    the sleeve that takes things to the next
  • 00:04:10
    level. Entanglement. Okay, entanglement
  • 00:04:13
    is where it starts to feel a little bit
  • 00:04:14
    like science fiction. When two cubits
  • 00:04:16
    become entangled, they're linked in a
  • 00:04:17
    way that's almost spooky. Einstein
  • 00:04:19
    called this spooky action at a distance,
  • 00:04:21
    and it still blows minds today. So,
  • 00:04:23
    here's an analogy to help wrap your head
  • 00:04:25
    around it. Imagine you've got two coins
  • 00:04:27
    that are entangled. You flip one and it
  • 00:04:28
    lands on heads. Instantly, the other
  • 00:04:31
    coin, whether it's across the room or
  • 00:04:32
    across the galaxy, lands on heads, too.
  • 00:04:35
    They're perfectly in sync, like they're
  • 00:04:36
    sharing some kind of cosmic connection
  • 00:04:38
    with no time delay. In quantum
  • 00:04:39
    computing, this linkage lets cubits work
  • 00:04:41
    together in ways that classical bits
  • 00:04:43
    can't, amplifying their power to solve
  • 00:04:45
    problems. When you combine superp
  • 00:04:47
    position and entanglement, you get a
  • 00:04:48
    machine that can juggle tons of
  • 00:04:49
    possibilities at once and coordinate
  • 00:04:51
    them perfectly. That's why quantum
  • 00:04:53
    computers can take on tasks that would
  • 00:04:55
    leave even the beefiest supercomputers
  • 00:04:56
    in the dust, like cracking codes or
  • 00:04:58
    simulating molecules or optimizing
  • 00:05:00
    massive systems. Speaking of which,
  • 00:05:02
    let's talk about what quantum computing
  • 00:05:04
    could actually do for us. So, why should
  • 00:05:07
    you care about all this quantum
  • 00:05:08
    computing weirdness? Because it's not
  • 00:05:10
    just a cool science experiment anymore.
  • 00:05:12
    It could change the world. And here are
  • 00:05:14
    some big areas where quantum computing
  • 00:05:16
    is poised to make waves. Number one is
  • 00:05:18
    cryptography. Right now, most of the
  • 00:05:20
    internet security, like your online
  • 00:05:22
    banking or those encrypted messages you
  • 00:05:24
    send, rely on math problems that are
  • 00:05:25
    really, really hard for classical
  • 00:05:27
    computers to solve. Take a 256-bit
  • 00:05:30
    encryption key, for example. A classical
  • 00:05:32
    computer would need billions of years to
  • 00:05:34
    crack it. But a quantum computer, it
  • 00:05:36
    could potentially do it in hours or even
  • 00:05:38
    minutes using another algorithm called
  • 00:05:39
    Shor's algorithm. And that's a gamecher,
  • 00:05:42
    both a threat and an opportunity. It
  • 00:05:44
    means we'll need new quantum resistant
  • 00:05:46
    encryption methods soon and quantum tech
  • 00:05:48
    could help us build them. We could also
  • 00:05:50
    save lives faster because in medicine
  • 00:05:52
    creating new drugs is a slow expensive
  • 00:05:55
    process. And a big part of that is
  • 00:05:56
    simulating how actual molecules
  • 00:05:58
    interact. Something classical computers
  • 00:06:00
    struggle with because these calculations
  • 00:06:01
    are so complex. Quantum computers could
  • 00:06:04
    possibly zoom through these simulations
  • 00:06:06
    modeling molecules down to the atomic
  • 00:06:08
    level. That could mean faster
  • 00:06:09
    development of life-saving drugs, from
  • 00:06:11
    cancer treatments to vaccines, cutting
  • 00:06:13
    years off the process and getting help
  • 00:06:14
    to people who need it sooner. AI and
  • 00:06:16
    machine learning are already
  • 00:06:17
    transforming the world, but they're
  • 00:06:19
    hungry for data and computing power.
  • 00:06:21
    Quantum computers could supercharge them
  • 00:06:22
    by processing the massive data sets way
  • 00:06:24
    faster than classical machines. Imagine
  • 00:06:27
    training an AI model in minutes instead
  • 00:06:29
    of days, or building systems that learn
  • 00:06:30
    and adapt in real time. That could lead
  • 00:06:32
    to smarter assistance, better
  • 00:06:34
    self-driving cars, or even breakthroughs
  • 00:06:36
    in robotics.
  • 00:06:38
    And ever wonder how companies figure out
  • 00:06:39
    the fastest delivery routes or the best
  • 00:06:41
    stock portfolios? Those are optimization
  • 00:06:44
    problems and they get insanely
  • 00:06:45
    complicated as the number of options
  • 00:06:47
    pile up. Classical computers have to
  • 00:06:49
    grind through possibilities one by one.
  • 00:06:51
    But quantum computers can explore tons
  • 00:06:52
    of them all at once. And that could mean
  • 00:06:55
    more efficient supply chains, cheaper
  • 00:06:56
    energy, or even helping scientists
  • 00:06:58
    design better materials. And those are
  • 00:07:00
    just the tips of the icebergs. Quantum
  • 00:07:02
    computing could also tackle climate
  • 00:07:04
    modeling, financial forecasting, and
  • 00:07:05
    even fundamental physics questions that
  • 00:07:07
    we haven't cracked yet. It's not just
  • 00:07:09
    about doing things faster. It's also
  • 00:07:11
    about doing things we couldn't do
  • 00:07:12
    before. Now, before you start picturing
  • 00:07:15
    a quantum PC on your desk, let's pump
  • 00:07:17
    the brakes a bit. Quantum computing is
  • 00:07:19
    still very much in its early days, like
  • 00:07:21
    in the vacuum tube or maybe even relay
  • 00:07:23
    era of classical computing. We've got a
  • 00:07:25
    long way to go before it's ready for
  • 00:07:26
    prime time, but the progress is very
  • 00:07:28
    exciting. Big players like IBM, Google,
  • 00:07:31
    and Microsoft are pouring billions into
  • 00:07:32
    quantum research. Back in 2019, Google
  • 00:07:35
    made headlines when their sycamore
  • 00:07:37
    processor achieved quantum supremacy. It
  • 00:07:40
    solved a super specific problem in 200
  • 00:07:42
    seconds that would have taken a
  • 00:07:43
    classical computer 10,000 years. IBM's
  • 00:07:46
    got their quantum experience letting
  • 00:07:48
    developers tinker with cubits in the
  • 00:07:50
    cloud. And startups like Regetti and
  • 00:07:51
    D-Wave are pushing the boundaries, too.
  • 00:07:53
    But there are some big challenges
  • 00:07:55
    holding us back. Cubit stability is one.
  • 00:07:58
    Cubits are fussy little things. They
  • 00:07:59
    need to be kept at temperatures colder
  • 00:08:01
    than outer space, like minus 460
  • 00:08:03
    Fahrenheit, which is about 275 below
  • 00:08:05
    Celsius. And even then, tiny vibrations
  • 00:08:08
    or even electromagnetic noise can mess
  • 00:08:10
    them up. This is called decoherence, and
  • 00:08:12
    it leads to errors in calculations.
  • 00:08:14
    Fixing those errors is tricky. Quantum
  • 00:08:16
    air correction needs extra cubits to
  • 00:08:18
    doublech checkck the work, which makes
  • 00:08:19
    the whole system more complex and
  • 00:08:21
    expensive. It's like trying to proofread
  • 00:08:23
    a book while somebody's shaking the
  • 00:08:24
    pages. Right now, we can build quantum
  • 00:08:26
    computers with dozens of cubits.
  • 00:08:28
    Google's got 53. IBM's hit 65. The
  • 00:08:31
    practical applications might need
  • 00:08:33
    thousands or millions of them. Scaling
  • 00:08:35
    up without losing control of these
  • 00:08:37
    delicate cubits is a massive engineering
  • 00:08:39
    puzzle. Still, the pace of innovation is
  • 00:08:41
    actually picking up. New materials,
  • 00:08:43
    better cooling systems, and smarter
  • 00:08:44
    algorithms are chipping away at these
  • 00:08:46
    hurdles. We're not there yet, but we're
  • 00:08:48
    definitely on the road. In short, your
  • 00:08:50
    classical computer is a trusty workhorse
  • 00:08:52
    for daily stuff, while quantum computers
  • 00:08:54
    are like rocket chips built for
  • 00:08:55
    exploring uncharted territory. They're
  • 00:08:57
    not here to replace your laptop. They're
  • 00:08:59
    here to solve the unsolvable. So, what's
  • 00:09:01
    next? Where is this all heading? Well,
  • 00:09:03
    the experts reckon we're maybe a decade
  • 00:09:05
    away from quantum computers hitting the
  • 00:09:06
    mainstream. Think 2030s or so. When that
  • 00:09:09
    happens, industries like healthcare,
  • 00:09:11
    finance, and security could look totally
  • 00:09:13
    different. Imagine drugs designed in
  • 00:09:15
    months instead of years, or AI that's
  • 00:09:17
    way smarter than anything we've seen
  • 00:09:18
    yet. But it's not just about practical
  • 00:09:20
    stuff. Quantum computing could help us
  • 00:09:22
    crack the big mysteries, like how the
  • 00:09:24
    universe works at its deepest levels, or
  • 00:09:26
    how to build the perfect climate models.
  • 00:09:28
    It's the kind of tech that doesn't just
  • 00:09:29
    improve what we have. It opens doors
  • 00:09:31
    that we didn't even know existed. So,
  • 00:09:33
    there you have it. We covered the
  • 00:09:34
    basics: cubits, superp position,
  • 00:09:36
    entanglement, and why it matters. It's a
  • 00:09:38
    wild, fascinating field that's going to
  • 00:09:39
    shake up the world, and we're just
  • 00:09:41
    getting started. If you enjoyed this
  • 00:09:43
    episode, don't forget that I'm mostly in
  • 00:09:44
    this for the subs and likes. So, I'd be
  • 00:09:46
    honored if you consider subscribing to
  • 00:09:47
    the channel and leaving a like on the
  • 00:09:49
    video before you go today. If you've got
  • 00:09:51
    questions, drop them in the comments. I
  • 00:09:52
    do love hearing from you. I read them
  • 00:09:54
    all and we answer the best ones every
  • 00:09:55
    Friday on Shop Talk. Check it out at the
  • 00:09:57
    link in the video description. In the
  • 00:09:59
    meantime, and in between time, hope to
  • 00:10:01
    see you next time right here in Dave's
الوسوم
  • computació quàntica
  • cubits
  • superposició
  • entrellaçament
  • algoritme de Grover
  • algoritme de Shor
  • criptografia
  • intel·ligència artificial
  • medicina
  • optimització