00:00:03
[Musik]
00:00:15
Halo assalamualaikum warahmatullahi
00:00:19
wabarakatuh Halo sobat fisika jumpa lagi
00:00:22
dengan saya Yusuf Ahmad pada video kali
00:00:26
ini kita akan membahas salah satu materi
00:00:29
fisika kelas 10 yaitu berkaitan dengan
00:00:32
Factor Apa sih itu Factor buat sahabat
00:00:36
fisika yang belum tahu apa sih itu
00:00:38
Factor yuk simak penjelasannya berikut
00:00:40
ini apa sih itu Factor Iya besaran
00:00:46
vektor merupakan besaran yang memiliki
00:00:49
nilai dan juga arah contohnya gaya
00:00:55
perpindahan kecepatan percepatan
00:00:59
momentum dan lain-lain sedangkan besaran
00:01:04
yang hanya memiliki nilai saja itu
00:01:07
disebut dengan besaran skala contohnya
00:01:11
panjang masa
00:01:15
Hai volume dan lain sebagainya jadi
00:01:18
vektor adalah besaran yang memiliki
00:01:21
nilai dan juga arah sedangkan yang
00:01:24
memiliki nilai saja itu disebut besaran
00:01:26
skala Lalu bagaimana cara menggambarkan
00:01:31
vektor vektor itu digambarkan dengan
00:01:36
sebuah anak panah Dimana arah panah itu
00:01:42
menuju mobil arah vektor dan panjang
00:01:45
panah itu menunjukkan besar vektor
00:01:49
contohnya misalnya di sini ada Factor
00:01:52
a-a-a-a Hnya kekanan nilainya 25 piton
00:01:57
sedangkan vektor B arahnya ke kanan juga
00:02:01
nilainya 15 N disini kita bisa melihat
00:02:05
bahwa Factor yang nilainya lebih besar
00:02:08
dia akan digambarkan lebih panjang
00:02:11
daripada faktor yang nilainya lebih
00:02:14
kecil
00:02:17
file-nya Lalu bagaimana cara menotasikan
00:02:19
atau menuliskan Factor penulisan simbol
00:02:23
atau lambang vektor itu dapat dilakukan
00:02:26
dengan 2 cara cara yang pertama sektor
00:02:31
disimbolkan dengan dua huruf besar atau
00:02:34
dengan satu huruf namun diatasnya diberi
00:02:39
tanda panah contoh misalnya di sini ada
00:02:45
vektor perpindahan dari AKB48 dari a ke
00:02:51
b dapat ditulis bisa menggunakan dua
00:02:54
huruf bisa ditulis kantor api dengan
00:02:58
tanda panah ya tasnya atau cukup
00:03:02
menggunakan satu huruf saja boleh
00:03:05
ditulis vektor a dengan tanda panah di
00:03:09
atasnya boleh absah meleleh juga akan
00:03:12
Child
00:03:15
Hai ini cara yang kedua vektor bisa
00:03:19
disimbolkan dengan dua huruf besar atau
00:03:22
dengan satu huruf saja yang dicetak
00:03:24
tebal contohnya dari vektor perpindahan
00:03:29
atau media tanam vektor perpindahan dari
00:03:33
a ke b dapat ditulis vektor AB Dimana
00:03:38
adanya itu dicetak tebal jika dicetak
00:03:42
tebal maka tidak perlu diberi tanda
00:03:45
panah di atasnya atau abshar atau kecil
00:03:52
yang dicetak tebal seperti itu Jadi ada
00:03:56
dua cara untuk menotasikan atau
00:03:59
menuliskan vektor
00:04:02
di blog lalu berikutnya kita akan
00:04:06
membahas tentang penjumlahan vektor u
00:04:10
Hai ada beberapa metode penjumlahan
00:04:11
vektor metode yang pertama dan metode
00:04:15
segitiga kemudian ada metode
00:04:17
jajargenjang metode poligon dan yang
00:04:21
keempat ada metode analitik Yuk kita
00:04:27
bahas satu persatu yang pertama dari
00:04:30
metode segitiga metode segitiga ini bisa
00:04:35
kita anggap metode ujung ketemu pakai
00:04:40
Maksudnya bagaimana contoh misal disini
00:04:44
Saya punya sebuah vektor Aa yang arahnya
00:04:48
ke kanan kemudian ada vektor B yang
00:04:51
arahnya ini serong ke atas perih
00:04:56
kemudian tentukan yang pertama resultan
00:05:00
dari a + b kemudian MB resultan dari
00:05:06
admin by
00:05:10
yang menentukannya Nah kita bahas jadi
00:05:14
yang pertama yang kita diminta untuk
00:05:16
menentukan resultan dari a + b langkah
00:05:20
yang pertama menggunakan metode segitiga
00:05:24
ini kita Gambarkan terlebih dahulu
00:05:26
disini Medan resultan aplus by kita
00:05:31
Gambarkan dulu Factor yang pertama yaitu
00:05:33
vektor a vektor a arahnya dia ke kanan
00:05:38
lalu di sini + b maka kita Gambarkan
00:05:43
vektor b nya seperti ini Nah dengan
00:05:46
metode segitiga gimana ujung ketemu
00:05:48
Tangkal jadi dari ujung ini nah pangkal
00:05:53
B kita gambar dari ujung a seperti ini
00:05:57
Nah jadi di sini ada ujung ketemu
00:06:02
pangkal ujungnya bertemu dengan pangkal
00:06:04
B Lalu bagaimana cara menggambarkan
00:06:08
resultannya
00:06:10
cara menggambarkan resultannya ah cukup
00:06:12
kita tarik Garis dari titik awal ke
00:06:16
titik akhirnya kau dari pangkal Factor
00:06:20
AT7 vektor B nah seperti ini jadi
00:06:29
Hai hadapan atau garis panah warna merah
00:06:31
ini ini merupakan vektor resultan dari a
00:06:37
+ b seperti itu kemudian yang B kita
00:06:42
diminta untuk menentukan resultan dari
00:06:44
Amin B = yang ha langkah pertama yang
00:06:48
harus kita lakukan adalah menggambarkan
00:06:50
vektor yang pertama terlebih dahulu
00:06:53
yaitu Factor a&k kanan Nah di sini di
00:06:57
sini dia tidak ditambah dengan vektor B
00:07:00
tapi dikurangi atau main by mind by
00:07:04
artinya Bagaimana cara menggambarkan
00:07:06
vektor minde di sini kita punya vektor
00:07:09
metode Hector B yang arahnya ke atas
00:07:13
berarti kalau disini yang diminta adalah
00:07:16
mingey kita cukup membalik atau mengubah
00:07:22
atau tanahnya saja jadi ini yang
00:07:25
harusnya ke atas kitabul ha kita ubah
00:07:28
vektor
00:07:29
di jadi ke bawah sehingga Factor min b
00:07:32
nya Nah dia serang seperti ini ya yang
00:07:36
tadinya ke atas karena ini min b dia
00:07:39
jadinya ke kebawah sehingga kita
00:07:42
dapatkan resultannya kita tarik dari
00:07:44
titik awal sampai ke titik akhirnya ini
00:07:49
merupakan resultan dari a-line B
00:07:52
menggunakan metode segitiga metode
00:07:58
berikutnya adalah metode jajargenjang
00:08:01
metode jajargenjang ini bisa kita anggap
00:08:04
sebagai metode pangkal ketemu panggung
00:08:09
Maksudnya seperti apa Nah di sini contoh
00:08:12
Misalnya ini ada dua vektor a dan b
00:08:16
seperti pada contoh sebelumnya kita
00:08:18
diminta untuk menentukan resultan dari a
00:08:21
+ b dan resultan Amin B tetapi
00:08:24
menggunakan metode jajargenjang kita
00:08:29
ini yang pertama di sini resultan dari a
00:08:32
+ b langkah yang pertama seperti tadi
00:08:36
kita Gambarkan terlebih dahulu faktor
00:08:38
yang pertama yaitu Factor a-a-a-a Hnya
00:08:41
dia ke kanan kemudian kita Gambarkan
00:08:45
vektor b nya tetapi bedanya dengan
00:08:50
menggunakan metode segitiga kalau metode
00:08:52
segitiga vektor b nya kita gambarnya
00:08:54
dari ujung Factor at&t kalau menggunakan
00:08:58
metode jajargenjang Factor banyak kita
00:09:01
menggambarnya dari pangkal vektor a
00:09:05
sehingga di sini ketemu pangkal ketemu
00:09:10
plampitan nah sesuai dengan namanya
00:09:14
metode jajargenjang dari dua vektor yang
00:09:18
sudah kita temukan kedua pangkalnya ini
00:09:21
kita buat menjadi sebuah jajargenjang
00:09:24
caranya yaitu dengan membuat garis bantu
00:09:27
seperti ini Sehingga
00:09:29
Hai menjadi bentuk sebuah jajargenjang
00:09:32
lalu Bagaimana cara menentukan resultan
00:09:34
nya untuk menentukan resultannya cukup
00:09:38
kita tarik Garis dari pertemuan dua
00:09:42
pangkal vektor a dan b ini menjadi
00:09:45
sebuah diagonal dari jajargenjang ini
00:09:49
nah ini merupakan resultan dari a + b
00:09:55
kita lanjutkan ke yang B di sini kita
00:09:58
diminta untuk menentukan resultan
00:10:03
Hai sama dengan langkah sebelumnya
00:10:05
rangka yang pertama yaitu dengan kita
00:10:08
menggambarkan vektor yang pertama yaitu
00:10:10
vektor a dia arahnya ke kanan kemudian
00:10:13
disini Meimei Meimei karena ini vektor B
00:10:19
di arahnya ke atas maka MB cukup Kita
00:10:21
pindah tanda panahnya saja sehingga dia
00:10:23
jadi ke ke bawah tapi ngetik kalau
00:10:27
menggunakan metode jajargenjang kita
00:10:29
menggambarnya adalah pangkal ketemu
00:10:31
Wangkal artinya Factor berikutnya kita
00:10:34
gambarnya adalah dari pangkal Factor
00:10:36
yang pertama atau dari vektor a ini nah
00:10:40
ini merupakan Factor min b Bagaimana
00:10:44
cara menggambarkan resultannya sama
00:10:48
dengan langkah sebelumnya pada yang ini
00:10:52
kita gambar dua faktor ini menjadi
00:10:55
gambar sebuah jajargenjang lalu untuk
00:11:00
menggambarkan resultannya cukup kita
00:11:03
Paris dari pertemuan dua pangkal kantor
00:11:06
ini menjadi diagonal dari jajargenjang
00:11:10
nah ini merupakan
00:11:13
Hai resultan dari vektor A min b seperti
00:11:17
itu kita lanjut ke berikutnya yaitu
00:11:21
metode poligon metode poligon ini
00:11:26
merupakan pengembangan dari metode
00:11:28
segitiga yaitu metode ujung ketemu
00:11:32
pangkal hanya tadi Kalau metode segitiga
00:11:37
dan metode jajargenjang itu hanya untuk
00:11:41
penjumlahan dua vektor saja sedangkan
00:11:44
metode poligon ini bisa kita gunakan
00:11:47
untuk lebih dari dua vektor contohnya
00:11:52
misal Disini anda Factor arahnya ke
00:11:54
kanan vektor B arahnya dia serongga atas
00:11:58
kemudian ada vektor c yang arahnya ke
00:12:02
atas Tentukan resultan dari B + A min c
00:12:09
e
00:12:09
Hai nah Bagaimana cara menentukan
00:12:13
resultan nya menggunakan metode poligon
00:12:16
sama dengan metode segitiga langkah yang
00:12:19
pertama yaitu kita menggambarkan
00:12:22
terlebih dahulu Factor yang pertama
00:12:24
yaitu vektor vektor B vektor B arahnya
00:12:30
dia serongga atas kemudian disini plus
00:12:34
a-plus a-data kita menggambarkan vektor
00:12:37
hanya dari ujung vektor B dia ke kanan
00:12:42
lalu di sini mence mence kita lihat
00:12:46
vektor C dia arahnya ke atas berarti
00:12:49
kalau disini mencekam Factor c-nya
00:12:53
jadinya ke kebawa ini adalah Factor
00:12:57
mintje b-plus a-b-c Lalu bagaimana cara
00:13:03
menggambarkan resultanya sama dengan
00:13:06
metode segitiga cukup kita tarik Garis
00:13:08
dari titik
00:13:09
file detik terakhir ini merupakan gambar
00:13:16
resultan dari bplus A min c seperti itu
00:13:22
cukup mudah bukan nah itu tadi metode
00:13:25
segitiga metode jajargenjang dan juga
00:13:27
metode poligon untuk metode analitik
00:13:31
nanti kita akan bahas di next video ya
00:13:35
oke tonton terus channel ini biar kalian
00:13:38
tidak ketinggalan materinya oke itu saja
00:13:41
dari saya semoga bermanfaat saya Yusuf
00:13:45
Ahmad Terima kasih salamualaikum
00:13:46
warahmatullahi wabarakatuh
00:13:51
[Musik]