Electron Configuration Concepts part 1

00:09:21
https://www.youtube.com/watch?v=0_Kz_eE-uBg

Summary

TLDRCette vidéo se concentre sur l'importance des configurations électroniques en chimie, qui sont essentielles car elles déterminent comment se forment les liaisons chimiques et pourquoi les réactions ont lieu. Le but est souvent d'atteindre une configuration électronique stable, similaire à celle des gaz nobles, qui ne réagissent guère en raison de leur stabilité intrinsèque. Le lien avec la table périodique est exploré, expliquant comment les éléments sont arrangés selon leurs orbitales : s, p, d, et f, chacune ayant une forme et une énergie spécifiques. Ces configurations expliquent pourquoi les éléments se comportent de manière particulière. L'utilisation des niveaux d'énergie et le modèle de Bohr aident à visualiser comment les électrons peuplent ces orbitales, bien que des exceptions comme l'hydrogène et l'hélium existent. Les transitions entre les niveaux, notamment pour les blocs d et f, sont expliquées comme points de complexité, souvent visualisées à travers des cartes électroniques que l'on peut trouver dans la table périodique.

Takeaways

  • 🔑 Importance des configurations électroniques en chimie.
  • ⛓️ Liaisons chimiques et rôle des configurations électroniques.
  • 🧊 Stabilité des gaz nobles.
  • 🗂️ Organisation de la table périodique par orbitales.
  • 🔄 Niveaux d'énergie et remplissage électronique.
  • 📏 Modèle de Bohr pour visualiser les niveaux d'énergie.
  • 📚 Blocs d'orbitales s, p, d, f.
  • 🌐 Pénétration et exceptions dans les niveaux d'énergie.
  • 🔍 Besoin d'un tableau périodique pour comprendre les configurations.
  • ❗ Complexité des exceptions comme l'hydrogène et l'hélium.

Timeline

  • 00:00:00 - 00:09:21

    Aujourd'hui, nous allons parler des configurations électroniques. Les configurations électroniques sont essentielles car quasiment toute la chimie est basée sur le transfert ou le partage des électrons. Les réactions chimiques et la formation des liaisons se produisent à cause des configurations électroniques. Chaque réaction vise à atteindre la configuration électronique des gaz nobles, souvent caractérisée par huit électrons de valence, à quelques exceptions près, comme l'hélium et l'hydrogène. Le tableau périodique est fondamental pour comprendre les configurations électroniques, car il aide à visualiser comment les électrons sont arrangés autour des atomes. Dans cette leçon, nous allons explorer les différentes orbitales telles que s, p, d et f, et voir comment elles correspondent aux différentes parties du tableau périodique.

Mind Map

Mind Map

Frequently Asked Question

  • Pourquoi les configurations électroniques sont-elles importantes en chimie ?

    Les configurations électroniques déterminent comment les atomes interagissent, forment des liaisons et induisent des réactions chimiques.

  • Quel est le but de toute réaction chimique selon la vidéo ?

    Le but est d'atteindre une configuration électronique similaire à celle des gaz nobles, qui sont stables et non-réactifs.

  • Comment la table périodique est-elle structurée en termes de configurations électroniques ?

    La table périodique est organisée en blocs d'orbitales (s, p, d, f), et chaque élément a une configuration électronique spécifique se terminant dans l'une de ces orbitales.

  • Quels sont les trois principaux types d'orbitales discutés ?

    Les orbitales s, p, d, et f sont discutées, correspondant à différents blocs de la table périodique.

  • Quelle est la relation entre les niveaux d'énergie et les orbitales ?

    Les niveaux d'énergie correspondent aux lignes de la table périodique, et chaque niveau comporte des sous-niveaux d'orbitales (s, p, d, f).

  • Quels éléments ont des configurations électroniques exceptionnelles ?

    L’hydrogène et l’hélium sont des exceptions en raison de leur petite taille et de leur configuration unique.

  • Quel est le modèle utilisé pour expliquer les niveaux d'énergie ?

    Le modèle de Bohr est utilisé pour illustrer comment les électrons occupent les niveaux d'énergie autour du noyau.

  • Pourquoi les configurations électroniques peuvent-elles être compliquées à comprendre ?

    Les exceptions comme les niveaux d'énergie des orbitales d et f, qui ne suivent pas l'ordre habituel, rendent les configurations électroniques complexes.

  • Qu'est-ce que l'échelle énergétique des niveaux d'orbitales ?

    C'est une hiérarchie qui détermine l'ordre de remplissage des électrons dans les orbitales, influencée par l'effet de pénétration.

  • Pourquoi est-il utile d'avoir un tableau périodique à portée de main en étudiant les configurations électroniques ?

    Un tableau périodique aide à comprendre visuellement où se situent les éléments et leurs configurations électroniques correspondantes.

View more video summaries

Get instant access to free YouTube video summaries powered by AI!
Subtitles
en
Auto Scroll:
  • 00:00:00
    thank you this today we're gonna talk
  • 00:00:01
    about electron configurations looking
  • 00:00:03
    true electron configurations are so
  • 00:00:05
    important because remember that
  • 00:00:07
    essentially all the chemistry that goes
  • 00:00:09
    on is a result of electrons either being
  • 00:00:13
    transferred or being shared everything
  • 00:00:15
    in chemistry essentially has something
  • 00:00:16
    to do with electrons with a couple of
  • 00:00:18
    exceptions chemistry essentially is the
  • 00:00:21
    study of electrons and where they're at
  • 00:00:22
    and where they're going to and how
  • 00:00:24
    things are coming together and and the
  • 00:00:27
    reason that they're trying to come
  • 00:00:28
    together it has everything to do with
  • 00:00:30
    electron configurations the reason that
  • 00:00:33
    chemical reactions of any kind happened
  • 00:00:35
    the reason that chemical bonds happen is
  • 00:00:38
    because of electron configurations
  • 00:00:40
    everything here is about electron
  • 00:00:43
    configurations at how are the electrons
  • 00:00:44
    arranged so for instance what I say that
  • 00:00:47
    everything revolves around electron
  • 00:00:48
    configurations everything every reaction
  • 00:00:53
    essentially is trying to get to this
  • 00:00:56
    column as far as its electron
  • 00:00:58
    configurations everything wants what we
  • 00:01:00
    call a ng EC or a noble gas electron
  • 00:01:03
    configuration typically speaking that
  • 00:01:06
    means eight valence electrons helium
  • 00:01:09
    hydrogen those are a couple of
  • 00:01:11
    exceptions but but basically that's why
  • 00:01:13
    everything happens covalent bonds ionic
  • 00:01:15
    bonds they're gonna happen in order to
  • 00:01:18
    get to an electron configuration that is
  • 00:01:20
    the same as that of a noble gas and why
  • 00:01:22
    is that well because they're called
  • 00:01:24
    noble gases because essentially they
  • 00:01:27
    don't react with anything else because
  • 00:01:29
    they already have the electron
  • 00:01:31
    configuration that they really really
  • 00:01:33
    need so that's going to lead us into
  • 00:01:36
    electron configurations and we're gonna
  • 00:01:38
    talk about the three rules of electron
  • 00:01:39
    configurations but first off I want you
  • 00:01:42
    to take out a periodic table okay as
  • 00:01:44
    you're taking notes if you got it up on
  • 00:01:47
    another screen or another device or
  • 00:01:48
    whatever if you get a paper copy have an
  • 00:01:50
    electron configuration or having a
  • 00:01:52
    periodic table out in front of you as
  • 00:01:54
    we're going through this so that you can
  • 00:01:55
    see what we're talking about I think
  • 00:01:56
    things will make a whole heck of a lot
  • 00:01:58
    more sense if that's the case so before
  • 00:02:00
    we dive directly into the rules of for
  • 00:02:03
    electron configurations I want to talk a
  • 00:02:04
    little bit about the periodic table and
  • 00:02:06
    how it relates so I'm going to label
  • 00:02:08
    each of these if you remember in our
  • 00:02:09
    last video we talked about different
  • 00:02:12
    types of orbitals
  • 00:02:13
    so we said that we had s or girls that
  • 00:02:15
    look like sphere and we had P orbitals
  • 00:02:17
    that look sort of like an infinity sign
  • 00:02:19
    or sort of like a little dumbbell
  • 00:02:20
    structure and then we had D and F
  • 00:02:22
    orbitals and they really started to look
  • 00:02:24
    really weird
  • 00:02:24
    well that s P D F each one of those
  • 00:02:27
    things corresponds not just to an
  • 00:02:30
    orbital and a that goes into our
  • 00:02:32
    electron configuration so we're going to
  • 00:02:33
    talk about here in a second but
  • 00:02:35
    specifically refers to a part of the
  • 00:02:37
    periodic table that goes right along
  • 00:02:39
    with it and so each of these levels here
  • 00:02:44
    in what I'm doing corresponds to
  • 00:02:49
    specific orbitals so you'll see here
  • 00:02:51
    that everything I'm writing in this
  • 00:02:52
    little green region that everything I'm
  • 00:02:58
    writing in the green region is an S and
  • 00:03:00
    that means that everything in these
  • 00:03:02
    first two columns of the periodic table
  • 00:03:04
    ends in S orbitals their outermost
  • 00:03:07
    orbital is that of the s and that's that
  • 00:03:10
    spherical one to remember that we talked
  • 00:03:12
    about okay and so you should already
  • 00:03:14
    sort of be getting in your head that hey
  • 00:03:15
    does that apply to these other areas of
  • 00:03:18
    the periodic table and indeed in fact it
  • 00:03:20
    does and so if we come over here we've
  • 00:03:22
    got two P all the way across and then
  • 00:03:27
    we've got three P 4 P 5 P 6 P and of
  • 00:03:38
    recent interest to us is that we've sort
  • 00:03:40
    of filled in the 7 P part of the
  • 00:03:43
    periodic table here really recently in
  • 00:03:45
    fact with our good friend tennis scene
  • 00:03:47
    in there as well so we've got the
  • 00:03:49
    s-block of the periodic table we have
  • 00:03:51
    the p block of the periodic table and
  • 00:03:52
    you can sort of already from knowing
  • 00:03:54
    what you know from the last video
  • 00:03:55
    figured out that there's a D and an F
  • 00:03:57
    block as well and so in this region is
  • 00:04:00
    the 3d and you'll notice I didn't draw
  • 00:04:04
    all the individual elements there I
  • 00:04:05
    didn't really feel like that was
  • 00:04:06
    particularly necessary at this point
  • 00:04:08
    because you've got a periodic table in
  • 00:04:10
    front of you that you're gonna use to
  • 00:04:13
    follow along as we start to do the
  • 00:04:15
    actual electron configurations so the
  • 00:04:18
    middle region the valley part of the
  • 00:04:20
    periodic table there that is the D block
  • 00:04:23
    and I'll come back to why the numbers
  • 00:04:25
    seem a little weird to you here just
  • 00:04:26
    and then down here at the bottom is the
  • 00:04:29
    F block with the lanthanides and
  • 00:04:33
    actinides okay and of course we remember
  • 00:04:39
    how many blocks are here there are ten
  • 00:04:40
    divisions here there 14 down here that's
  • 00:04:43
    gonna be really important to stop and
  • 00:04:45
    pause and look at your periodic table
  • 00:04:46
    and make sure that you see this 10 and
  • 00:04:48
    the 14 once in a while you'll see 15
  • 00:04:50
    down here and we'll talk a little bit
  • 00:04:51
    more why that is as we go on what what
  • 00:04:55
    you probably noticed immediately is that
  • 00:04:57
    what about that helium up there you
  • 00:04:58
    didn't really label that helium and
  • 00:05:00
    hydrogen since they're so small they
  • 00:05:02
    sort of have some exception capabilities
  • 00:05:05
    but helium doesn't like to react it's a
  • 00:05:07
    noble gas in that case but it actually
  • 00:05:09
    only contains the 1s okay now what you
  • 00:05:14
    will also notice is that as you go down
  • 00:05:16
    each period remember that rows are
  • 00:05:18
    period periods in the periodic table and
  • 00:05:20
    so as you go down each one of them you
  • 00:05:23
    are adding another energy level if we
  • 00:05:25
    were to draw that in terms of the Bohr
  • 00:05:27
    model we would have one little circle
  • 00:05:30
    and then we would have a second one and
  • 00:05:33
    then a third one and so on and so forth
  • 00:05:36
    until we had seven energy levels there
  • 00:05:39
    associated with that so we can see that
  • 00:05:41
    energy levels are going to tie in with
  • 00:05:44
    our orbitals now we're not going to go
  • 00:05:46
    too deep into this but all of these
  • 00:05:47
    things correspond to something called
  • 00:05:49
    quantum numbers quantum numbers
  • 00:05:50
    essentially give us an a way to uniquely
  • 00:05:53
    identify each electron within an atom
  • 00:05:57
    and the first two quantum numbers are
  • 00:05:59
    the energy level so the 1 to 1 you know
  • 00:06:02
    1 through 7 here and then the second
  • 00:06:05
    quantum number corresponds to the letter
  • 00:06:08
    whether it's s P D or F and again we're
  • 00:06:12
    not gonna worry too much about that
  • 00:06:13
    right now but you need to know that
  • 00:06:14
    there's a rationale and a reason behind
  • 00:06:16
    what each of those things are and so we
  • 00:06:19
    can see that we're gonna fill things up
  • 00:06:21
    in this way we know you guys already
  • 00:06:23
    know from middle school that if you drew
  • 00:06:24
    a nucleus and then you had one or or
  • 00:06:27
    Baton dat one of Bohr's models around it
  • 00:06:29
    then you would have one energy level
  • 00:06:31
    then you could put a second one on top
  • 00:06:33
    of that and you would know that you feel
  • 00:06:35
    from you putting your electrons from
  • 00:06:37
    closest to the nucleus on out and so if
  • 00:06:40
    you were
  • 00:06:40
    drawing a boar model you've got your
  • 00:06:42
    nucleus here okay
  • 00:06:43
    and then you've got one two let's say
  • 00:06:47
    three energy levels and if we were
  • 00:06:50
    adding electrons on to that let's say
  • 00:06:52
    that we were doing your middle school
  • 00:06:53
    interpretation of sodium which is right
  • 00:06:56
    here and sodium has 11 for its atomic
  • 00:06:59
    number that atomic number remembers also
  • 00:07:02
    its number of electrons if it's not an
  • 00:07:04
    ion and so you guys probably in middle
  • 00:07:06
    school filled these things up and you
  • 00:07:07
    said hey I can put two in the first
  • 00:07:09
    level and then I can put eight in the
  • 00:07:13
    second level okay and then we would put
  • 00:07:16
    the extra one out there on the third
  • 00:07:18
    level and that's how you did energy
  • 00:07:20
    levels in middle school well what we're
  • 00:07:22
    going to do today is very similar to
  • 00:07:23
    that but there's some rules that say hey
  • 00:07:26
    it's not just quite as easy as that and
  • 00:07:28
    it also matters not just like what
  • 00:07:30
    energy level they're at but what really
  • 00:07:32
    matters is what warbles they're in as
  • 00:07:34
    well and that's going to lead us into
  • 00:07:37
    the idea of valence electrons and all of
  • 00:07:39
    that stuff a little bit later okay so
  • 00:07:43
    energy levels sdp F blocks or I would
  • 00:07:47
    prefer if you said s P D F blocks you'll
  • 00:07:51
    notice that there's some weird
  • 00:07:52
    discrepancies here so like this is
  • 00:07:54
    energy level four okay so for s for P
  • 00:07:58
    but in the middle there's this weird 3d
  • 00:08:00
    here and this is what makes electron
  • 00:08:02
    configurations a little bit complicated
  • 00:08:04
    because there are those exceptions there
  • 00:08:06
    in that this is energy level four but
  • 00:08:09
    what's gonna fill in between parts of
  • 00:08:11
    four is parts of three you'll notice
  • 00:08:13
    that all of the DS are exactly one below
  • 00:08:16
    where they would be if they were in the
  • 00:08:18
    s and P level and one other quick thing
  • 00:08:21
    that I want to make sure that you note
  • 00:08:22
    is that remember that your F block
  • 00:08:24
    actually fits in like right here okay
  • 00:08:29
    and if you look at your periodic tables
  • 00:08:31
    or if you've looked at the longer
  • 00:08:32
    expanded version you know that all of
  • 00:08:34
    this slides in here and then we would
  • 00:08:35
    get this big long giant periodic table
  • 00:08:37
    so you'll notice then if we put that in
  • 00:08:40
    that the FS would for F and 5f would go
  • 00:08:43
    here and that would be two levels below
  • 00:08:44
    the s and the P there there's a lot of
  • 00:08:47
    reasons behind that there's what we call
  • 00:08:49
    the penetration effect and all of those
  • 00:08:52
    things they're going to set up
  • 00:08:53
    some weirdnesses for where the electrons
  • 00:08:55
    are all more than we really need to know
  • 00:08:57
    in chem 1 what we really need to know in
  • 00:08:59
    chem 1 is how can I take an element okay
  • 00:09:04
    know how many electrons it has and then
  • 00:09:06
    be able to arrange an electron
  • 00:09:08
    configuration for that how can I write
  • 00:09:10
    this out in such a way that I can get
  • 00:09:14
    all of my electrons in the right place
  • 00:09:16
    because I need to know that to know how
  • 00:09:18
    things react really well so let's talk a
  • 00:09:20
    little bit about that
Tags
  • configurations électroniques
  • chimie
  • liaisons chimiques
  • gaz nobles
  • orbitales
  • table périodique
  • niveaux d'énergie
  • modèle de Bohr
  • hydrogène
  • hélium