Transcripción de ADN; traducción de ARN o síntesis de proteínas; explicado

00:13:11
https://www.youtube.com/watch?v=uiCrjZ-0eQk

Zusammenfassung

TLDRO vídeo ofrece unha explicación básica e xeral do proceso de transcrición do ADN a ARN mensaxeiro, e a posterior tradución ou síntese de proteínas a partir dese ARN nos ribosomas. Comeza explicando que o ADN se transcribe a un ARN mensaxeiro no núcleo das células eucariotas e procarióticas, utilizando unha das cadeas de ADN como molde. Este ARN mensaxeiro transporta a información codificada ao citoplasma onde os ribosomas sintetizan proteínas cunha axuda crucial do ARN de transferencia. O vídeo destaca as diferenzas principais entre os compoñentes moleculares do ADN e do ARN, e describe as funcións específicas das estruturas celulares involucradas, como os ribosomas. Ademais, explícanse os conceptos do código xenético e a súa importancia na síntese de proteínas. Finalmente, anímaselle ao espectador a afondar máis nas diferencias destes procesos entre células eucariotas e procarióticas, así como a coñecer máis sobre os aminoácidos principais e codóns involucrados.

Mitbringsel

  • 🧬 A transcrición é o proceso de copiar ADN a ARN mensaxeiro.
  • 🔄 A transcrición ocorre no núcleo, a tradución nos ribosomas.
  • 💡 O ARN mensaxeiro leva a instrución do ADN ao citoplasma.
  • 🔍 O ARN difire do ADN usando uracilo en vez de timina.
  • 🔀 Os ribosomas sintetizan proteínas a partir do ARN mensaxeiro.
  • 🧩 O ARN de transferencia transporta e ensambla aminoácidos.
  • 📜 O código xenético usa tripletes ou codóns para codificar aminoácidos.
  • 🧪 A RNA polimerase é crucial para sintetizar o ARN mensaxeiro.
  • 🔗 As bases do ADN emparellan adenina-timina e guanina-citosina.
  • 🚀 Investigar máis sobre as diferencias en procesos entre tipos de células.

Zeitleiste

  • 00:00:00 - 00:05:00

    O vídeo explica como no ámbito da bioloxía, fenómenos complexos poden entenderse mellor se se expoñen de forma lóxica, pasando do abstracto ao concreto ou viceversa. Ofrece unha visión xeral do proceso de transcrición do ADN en ARN e síntese de proteínas. O ADN contén instrucións para construír un ser vivo; é copiado a ARN mensaxeiro no núcleo celular. Este ARN leva a información ao ribosoma, onde as proteínas son sintetizadas. As proteínas son descritas como bloques de construción básicos dun ser vivo.

  • 00:05:00 - 00:13:11

    O proceso de transcrición en células eucariotas é explicado de forma sinxela, destacando que a ARN polimerase xoga un papel crucial. Móvese ao longo da cadea molde do ADN e constrúe a cadea de ARN mensaxeiro. O proceso ten tres etapas: inicio, prolongación e terminación. O ARN mensaxeiro transporta a información aos ribosomas, que a usan para sintetizar proteínas, empregando RNA de transferencia para unir aminoácidos nunha cadea. A tradución comeza coa unión do ARN mensaxeiro ao ribosoma e prosigue ata un codón de finalización sinaliza o fin.

Mind Map

Mind Map

Häufig gestellte Fragen

  • Cal é o papel do ARN mensaxeiro no proceso?

    O ARN mensaxeiro leva a información do ADN desde o núcleo ata os ribosomas no citoplasma.

  • Onde teñen lugar a transcrición e a tradución no proceso celular?

    A transcrición ocorre no núcleo, mentres que a tradución ocorre nos ribosomas.

  • O ARN ten as mesmas bases nitrogenadas que o ADN?

    Non, o ARN usa uracilo en vez de timina, que é usado no ADN.

  • Cales son as fases da transcrición de ARN?

    A transcrición consta de iniciación, elongación e terminación.

  • Cal é a función do ARN de transferencia na síntese de proteínas?

    O ARN de transferencia transporta aminoácidos específicos e axúdanos no ensamblaxe de proteínas.

  • Que é o código xenético e como funciona?

    O código xenético é un sistema de codificación de información baseado en tripletes de bases nitrogenadas chamados codóns.

  • Cales son as funcións dos ribosomas no proceso de tradución?

    Os ribosomas son estruturas celulares onde ocorre a síntese de proteínas.

  • Como se emparellan as bases nitrogenadas no ADN?

    No ADN, as bases sempre se emparellan como adenina con timina e guanina con citosina.

  • Que enzima é responsable da síntese de ARN?

    RNA polimerase é a enzima que se encarga de construir a cadea de ARN mensaxeiro durante a transcrición.

  • Como se relaciona o código xenético coa síntese de proteínas?

    O código xenético involucra tripletes ou codóns que codifican aminoácidos, con algún kodóns actuando como sinais de inicio ou parada da tradución.

Weitere Video-Zusammenfassungen anzeigen

Erhalten Sie sofortigen Zugang zu kostenlosen YouTube-Videozusammenfassungen, die von AI unterstützt werden!
Untertitel
en-US
Automatisches Blättern:
  • 00:00:11
    In subjects such as biology, details of a phenomenon or process...
  • 00:00:15
    can be better understood if they are exposed in a logical way, transiting in a timely manner...
  • 00:00:21
    from the abstract to the concrete; or vice versa. All in a coherent context
  • 00:00:27
    I will make an effort to achieve the above exposing in a basic way the process...
  • 00:00:31
    of DNA transcription and protein translation or synthesis
  • 00:00:39
    Let's start explaining this topic by what do we know...
  • 00:00:43
    we know that DNA contains instructions to build a living being, right?
  • 00:00:48
    But... how does DNA become a living being?
  • 00:00:51
    The details in this regard overwhelm even the scientists, however...
  • 00:00:55
    the fundamental principle is the following:
  • 00:00:59
    A fragment of the DNA is copied or transcribes into a molecule called ribonucleic acid or RNA for short
  • 00:01:07
    It is from this copy that proteins are synthesized or produced
  • 00:01:12
    Proteins are like the basic building blocks of a living being...
  • 00:01:17
    like Wally the cat, or like you or me
  • 00:01:19
    The copy or transcription of DNA in RNA is done in the cell nucleus...
  • 00:01:24
    in the membrane core of the eukaryotic cell and in the nucleus without membrane of the prokaryotic cell...
  • 00:01:30
    but the translation or synthesis of proteins happens in a cellular structure called ribosome
  • 00:01:36
    Here we see a pair of ribosomes in the cytoplasm
  • 00:01:40
    Resembling perhaps an acorn, the ribosome is composed of two parts: one smaller than the other
  • 00:01:47
    Here there are a lot of ribosomes in the prokaryotic cell
  • 00:01:54
    The DNA is lodged in the nucleus and organizes in chromosomes like that of this eukaryotic cell
  • 00:02:00
    For reasons I'm not going to list here...
  • 00:02:03
    the DNA of the nucleus can’t go directly to the cytoplasm...
  • 00:02:06
    but the DNA fragments transcribed in the form of RNA can come out of the nucleus...
  • 00:02:12
    ...and take the information or message to the cytoplasm
  • 00:02:18
    It is very clear why this ribonucleic acid is called messenger RNA or mRNA
  • 00:02:24
    Unlike DNA that is composed of two strands, RNA is a molecule of a single strand or chain of nucleotides
  • 00:02:35
    Remember that each DNA nucleotide consists of a deoxyribose sugar...
  • 00:02:40
    a nitrogenous base and a phosphate group
  • 00:02:48
    Deoxyribose is a sugar of five carbon atoms
  • 00:02:52
    I'm pointing them with the laser indicator
  • 00:02:58
    In chemistry, we number these carbons from the one that joins the nitrogenous base
  • 00:03:03
    You see? We have five!
  • 00:03:06
    The fifth and third carbon are two important extremes...
  • 00:03:09
    We call these extremes: 5 prime phosphate and 3 prime hydroxyl
  • 00:03:18
    Here is the scheme of a nucleotide. It has its ends five prime phosphate and three prime hydroxyl
  • 00:03:28
    Other nucleotides are chained at these ends to form a strand of DNA
  • 00:03:47
    In this way we have a strand in 5’-end and 3’-end direction
  • 00:03:52
    By its molecular structure the other strands of DNA will necessarily have an...
  • 00:03:57
    inverse direction. DNA strands are antiparallel
  • 00:04:07
    To copy a fragment of DNA in form of ARN it is enough to use a strand…
  • 00:04:12
    of the first as a template
  • 00:04:14
    ARN form their nucleotides with a ribose sugar
  • 00:04:18
    and by this molecular reason one of its four nitrogenous bases differs from those of DNA
  • 00:04:25
    RNA uses uracil as a nitrogenous base instead of DNA thymine
  • 00:04:31
    But both bases are –let's say equivalents
  • 00:04:35
    In addition to the number of strands, now you now other molecular differences between DNA and RNA
  • 00:04:48
    I have given you some preliminary concepts
  • 00:04:51
    But how is messenger RNA synthesized from a DNA template strand?
  • 00:04:59
    The process of transcription is more complex in eukaryotic cells than in prokaryotic cells...
  • 00:05:04
    but to simplify it, I will explain it in a general way...
  • 00:05:08
    that is, with the essential points valid in both cases
  • 00:05:25
    In transcription there is always an enzyme RNA polymerase...
  • 00:05:28
    that moves in 3'-end - 5'-end direction on the template thread
  • 00:05:35
    I hope it makes more sense now...
  • 00:05:37
    why I first explained to you what the hell was that "3 prime end-5 prime end"
  • 00:05:42
    In its path through the template strand, RNA polymerase builds the strand of messenger RNA
  • 00:05:49
    How is it done? Don't worry! Here I will show you
  • 00:06:02
    I promise you that the explanation is coming. I was engrossed with the music...
  • 00:06:06
    and the dancing enzyme. But first, I warn you that this enzyme can form...
  • 00:06:10
    different types of RNA
  • 00:06:14
    All these types of RNA are important to build living beings from proteins
  • 00:06:20
    But in the transcript, the protagonist is the messenger RNA
  • 00:06:25
    The transcription or formation of messenger RNA has three stages: initiation, elongation and termination
  • 00:06:33
    The initiation consists in indicating the RNA polymerase at which point of the ADN sequence...
  • 00:06:39
    it must initiate transcription or RNA synthesis
  • 00:06:44
    There are sequences of nitrogenous bases - in DNA - called promoter centers that...
  • 00:06:49
    that indicate to this enzyme where to start the transcription or copy in the form of RNA
  • 00:06:55
    Coming up next, let's see it in more detail!
  • 00:06:58
    RNA polymerase binds to these promoter centers and forms a...
  • 00:07:03
    transcription bubble, where -in cooperation with other enzymes- begins...
  • 00:07:06
    to partially unwind the DNA molecule
  • 00:07:10
    Here we see the unwound strands in the transcription bubble and I have added the letters of each nitrogenous bases...
  • 00:07:17
    to represent them better
  • 00:07:18
    Remember that in DNA each of the nitrogenous bases of a strand matches a specific base of the other
  • 00:07:25
    In DNA, bases couples are always adenine and thymine; guanine and cytosine
  • 00:07:31
    The bases are united through bridges of hydrogen, but in the transcription...
  • 00:07:35
    these are broken by enzymatic action
  • 00:07:38
    The unique RNA chain is constructed in the transcription bubble...
  • 00:07:42
    in the opposite direction to that of the template strand, that is...
  • 00:07:45
    in a direction from 5 prime to 3 prime, given that it is a kind of negative of the DNA strand template
  • 00:07:54
    In the initiation stage, the RNA polymerase assembles the first RNA nucleotides or ribonucleotides...
  • 00:08:02
    because it uses ribose -remember- and these nucleotides are found there in the nucleus
  • 00:08:06
    The enzyme selects those that correspond...
  • 00:08:09
    to each of the nitrogenous template bases
  • 00:08:14
    I explained earlier that in RNA, uracil replaces thymine
  • 00:08:19
    this means that when the RNA polymerase finds an adenine in the template strand...
  • 00:08:24
    places a ribonucleotide with uracil in the RNA strand
  • 00:08:32
    When there are enough ribonucleotides and the RNA chain does not break...
  • 00:08:36
    the RNA polymerase is released from the promoter...
  • 00:08:39
    and the elongation happens
  • 00:08:41
    In this phase, RNA polymerase continues its path through the template strand while assembling...
  • 00:08:47
    in the same way the rest of ribonucleotides
  • 00:08:50
    In the back of the transcription bubble, the DNA template strand...
  • 00:08:54
    meets again with its original partner to re-form...
  • 00:08:57
    the double helix, as if it were the end of a «closure»
  • 00:09:02
    Transcription continues until the RNA polymerase encounters a DNA termination signal...
  • 00:09:08
    and then the transcription bubble will...
  • 00:09:10
    disassembles and releases the RNA polymerase and newly formed messenger RNA
  • 00:09:20
    And now what happens with the messenger RNA?
  • 00:09:23
    Messenger RNA carries this information to ribosomes
  • 00:09:27
    Ribosomes use messenger RNA
  • 00:09:30
    to synthesize proteins in cooperation with transfer RNA
  • 00:09:36
    The RNA message is encrypted...
  • 00:09:37
    in the famous genetic code, which is like a biological language...
  • 00:09:42
    The -between quotes- words in the genetic code are encrypted in a...
  • 00:09:46
    sequence of nitrogenous bases
  • 00:09:49
    To form a word of this code a minimum of three nitrogenous bases is required
  • 00:09:54
    This unit of three nitrogenous bases or triplet is called «codon»
  • 00:09:59
    In protein synthesis, a codon can be translated into an amino acid or a start or...
  • 00:10:04
    termination signal for the translation process
  • 00:10:07
    Several triplets or codons can encode the same amino acid and that is why it is said that there are synonymous codons...
  • 00:10:14
    The translation starts with the binding of the messenger RNA to the ribosome...
  • 00:10:18
    starting from a triplet or initiation codon that is usually adenine, uracil and guanine...
  • 00:10:24
    and which also encodes the amino acid «methionine»
  • 00:10:28
    Note that the ribosome covers two codons of the messenger RNA that are going to...
  • 00:10:32
    attach to two transfer RNA
  • 00:10:35
    The transfer RNA is...say, like a piece of a puzzle
  • 00:10:40
    At one end it coincides with a codon of mRNA...
  • 00:10:44
    and in the other end carries a specific amino acid
  • 00:10:47
    It's like an amino acid transporter
  • 00:10:52
    Each amino acid transported by the transfer RNA binds or chains with the next...
  • 00:10:57
    by a peptide bond
  • 00:11:00
    When that happens the transfer RNA that transported it
  • 00:11:03
    is free and can be used to transport the same type of amino acid...
  • 00:11:09
    in another protein synthesis
  • 00:11:35
    We observe how the process continues chaining or linking...
  • 00:11:40
    amino acids transported by transfer RNA
  • 00:11:46
    The ribosome goes through the codons of messenger RNA in...
  • 00:11:50
    5 prime end - 3 prime end direction
  • 00:11:53
    The translation process ends until you come across a...
  • 00:11:56
    codon of completion to which no amino acid corresponds, meaning that...
  • 00:11:59
    does not translate into any amino acid it's just an end signal
  • 00:12:04
    At this point the ribosome separates from the messenger RNA and also the amino acids...
  • 00:12:09
    chain is free. And so it ends the process of translation or synthesis...
  • 00:12:13
    because a protein is a long chain of amino acids that is folded... or bent
  • 00:12:27
    All right! You have reached the end of this video. If you have doubts with something of the exposed ...
  • 00:12:32
    you can go back to the video, repeat it or pause it when you need it...
  • 00:12:37
    my presentation has been general and basic. To deepen and encompass more details...
  • 00:12:42
    your participation is required. For example, you can investigate the...
  • 00:12:46
    differences of these processes in eukaryotic and prokaryotic cells or...
  • 00:12:50
    other factors or enzymes involved in transcription or translation but I didn't...
  • 00:12:54
    include in the video, as well as the 20 main amino acids that make up ...
  • 00:12:58
    the proteins, and codons that encode them. I hope I have been helpful...
  • 00:13:03
    See you another time!
Tags
  • Transcrición de ADN
  • ARN mensaxeiro
  • Ribosoma
  • Síntese de proteínas
  • ARN de transferencia
  • Código xenético
  • Tripletes (codóns)
  • Enzima RNA polimerase
  • Bases nitrogenadas
  • Células eucariotas e procarióticas