Plochá Země a preferovaný směr světla

00:14:58
https://www.youtube.com/watch?v=4Q9Li1MYQB4

Resumen

TLDRVideo diskusia sa zaoberá Sagnacovým efektom a jeho vplyvom na chápanie špeciálnej relativity. Detailing pokusov, ktoré zahŕňali vláknové gyroskopy, demonstráciu, že efekt nie je len závislý na uhlovej rotácii, ale aj na smere pohybu. Ruang Wang v roku 2004 prezentoval zistenie, ktoré môže spochybniť tvrdou špeciálnej relativity o konštantnej rýchlosti svetla, avšak tieto výsledky neboli široko akceptované. Diskusia tiež zahrnula, ako boli interpretované rozdielne pozorované javy vo vzťahu k Sagnacovmu efektu a špeciálnej relativite, spochybňujúc tak tradičné pohľady na tieto fyzikálne koncepty.

Para llevar

  • 🌀 Diskusia o Sagnacovom efekte a jeho historickom chápaní.
  • 🔬 Pozoruhodné experimenty s vláknovými gyroskopmi v roku 2004.
  • 📏 Zistenia Ruanga Wanga naznačujú závislosť efektu na smere, nie len rotácii.
  • ⚙️ Klasická špeciálna relativita môže byť týmito výsledkami spochybnená.
  • 🙈 Wangove zistenia neboli vedeckou komunitou prijaté s veľkým záujmom.
  • 🛰️ Spomenutý súvis s GPS technológiou a presnosťou meraní.
  • 📚 Diskusia zahŕňala interpretácie experimentov a ich teoretické dôsledky.
  • 🔄 Konkrétne experimenty pomocou dopravných pásov na meranie efektu.
  • 🎥 Video slúži ako diskusná platforma pre alternatívne fyzikálne teórie.

Cronología

  • 00:00:00 - 00:05:00

    V prvotnom čase videa je vysvetlený Sagnekov efekt, jeho pôvod a matematický základ. Sagnekov efekt bol pôvodne popísaný v roku 1913 a je spojený s uhlovou rotáciou zariadenia, pričom vysvetlenia sa zakladali na špeciálnej relativite. Vysvetľuje sa vzťah medzi rotaciou, uhlom a oblasťou, ktorú svetlo precestuje vo vnútri zariadenia, ako aj to, prečo sa v minulosti zohľadňovala rotácia ako príčina posunu vln. Tento prístup bol v rámci fyziky akceptovaný po celé storočie.

  • 00:05:00 - 00:14:58

    Neskôr, v roku 2004, Ruowang Wang spochybnil tieto predstavy tým, že dokázal, že Sagnekov efekt nezávisí od uhlovej rotácie, ale má smerovú závislosť. Jeho experiment s optickým gyroskopom a dopravníkovými pásmi ukázal, že lineárny Sagnekov efekt je skutočne možné matematicky popísať bez rotácie a že v takomto prostredí dochádza k variáciám závislým od smeru, v ktorom sa šírenie deje. Toto spochybnilo niektoré základné princípy špeciálnej relativity, pričom zistenia podľa svojho významu neboli verejne uznané ani oslávené.

Mapa mental

Mind Map

Preguntas frecuentes

  • Čo je Sagnacov efekt?

    Sagnacov efekt je jav, pri ktorom sa mení fáza svetla pohybujúceho sa v rotujúcom zariadení, čo sa prejaví ako posun v interferenčnom vzore.

  • Ako Sagnacov efekt mení chápania špeciálnej relativity?

    Podľa niektorých pokusov môže Sagnacov efekt naznačovať závislosť rýchlosti svetla na smere, čo by bolo v rozpore so špeciálnou relativitou, ktorá tvrdí, že rýchlosť svetla je pre všetkých pozorovateľov rovnaká, nezávisle na ich pohybe voči zdroju svetla.

  • Kto je Ruang Wang a čo je jeho prínos v tejto oblasti?

    Ruang Wang je vedec, ktorý v roku 2004 vykonal experimenty, ktoré naznačovali, že Sagnacov efekt nie je závislý na uhlovej rotácii, ale na smerovaní, čo je v rozpore s klasickou interpretáciou efektu.

  • Aké boli pokusy vykonané na overenie Sagnacovho efektu?

    Experimenty zahŕňali použitie vláknových gyroskopov a dopravných pásov, kde bol efekt meraný v lineárnom usporiadaní namiesto tradičného kruhového.

  • Prečo je experiment Ruanga Wanga považovaný za kontroverzný?

    Pretože jeho zistenia naznačujú, že rýchlosť svetla môže byť závislá na smere, čo by mohlo vyvrátiť základy špeciálnej relativity, no jeho práca nebola veľkosťou vedeckej komunity prijatá.

Ver más resúmenes de vídeos

Obtén acceso instantáneo a resúmenes gratuitos de vídeos de YouTube gracias a la IA.
Subtítulos
en
Desplazamiento automático:
  • 00:00:11
    [Music]
  • 00:00:23
    Miller
  • 00:00:58
    w
  • 00:01:28
    for
  • 00:01:56
    [Music]
  • 00:01:58
    for
  • 00:02:14
    [Music]
  • 00:02:28
    for for
  • 00:02:36
    [Music]
  • 00:03:16
    [Music]
  • 00:03:28
    yeah GPS one okay so to backtrack a
  • 00:03:32
    little bit real quick to catch everyone
  • 00:03:34
    up so we have the sagn effect linearized
  • 00:03:37
    now the the old way that they um
  • 00:03:41
    describe the effects of this you know
  • 00:03:42
    the snic effect is through mathematics
  • 00:03:44
    and they equate the effect due to uh
  • 00:03:47
    angular rotation so the equation that
  • 00:03:49
    they use is Delta tal 4 Omega a / c^2
  • 00:03:54
    and what they do here is that your delta
  • 00:03:56
    T is going to be your time interval
  • 00:03:58
    which produce which is basically saying
  • 00:04:00
    the Fring shift produced by this
  • 00:04:01
    circular rotation is equal to four * the
  • 00:04:04
    rotation of the device Omega stands for
  • 00:04:07
    uh angular rotation air a stands for the
  • 00:04:10
    area of the device meaning that the
  • 00:04:12
    length of the the path the length of
  • 00:04:14
    that light has to travel within the
  • 00:04:16
    device so if you have a you know a
  • 00:04:19
    classic sagn device like this or
  • 00:04:21
    something it's going to be this entire
  • 00:04:23
    length that light has to travel in the
  • 00:04:24
    device that's going to be your area so
  • 00:04:27
    and if in in the case of a uh uh what's
  • 00:04:30
    it called a fiber optic driver or
  • 00:04:31
    something like that where you have a
  • 00:04:33
    fiber optic cable it's going to be the
  • 00:04:34
    length of that cable so if your Cable's
  • 00:04:35
    1,000 met your area is a th000 meters so
  • 00:04:39
    what Wang and this is how they so what
  • 00:04:42
    was that 1913 s sagn did his inter or
  • 00:04:45
    yeah 1913 sagn did his interferometry
  • 00:04:48
    experiment and from there everyone
  • 00:04:51
    assumed that it was you know due to the
  • 00:04:54
    angular rotation of the device and
  • 00:04:56
    that's the way they equated it because u
  • 00:04:58
    m sorley they were saying was a null
  • 00:05:00
    result and that the speed of light was
  • 00:05:01
    the same so they were like stuck in that
  • 00:05:04
    Paradigm right they were in the middle
  • 00:05:05
    of trying to do that to reify uh Earth's
  • 00:05:08
    orbital velocity and make make you know
  • 00:05:10
    make that appear on the up and up but
  • 00:05:12
    then your boy sagnet came around came
  • 00:05:14
    around with essentially the exact same
  • 00:05:16
    experiment as the Nicholson Morley
  • 00:05:18
    experiment but it's just a rotating
  • 00:05:19
    device while it's running instead of
  • 00:05:21
    rotating it and then um taking a
  • 00:05:23
    measurement and then rotating it again
  • 00:05:25
    stopping it getting it fixed then taking
  • 00:05:26
    a measurement and then changing it so
  • 00:05:28
    this is just constantly rotating what
  • 00:05:30
    sagn did so they so they wrapped it up
  • 00:05:32
    in the Paradigm of like well because
  • 00:05:34
    it's a rotating device it's a
  • 00:05:35
    non-inertial frame so it doesn't fall
  • 00:05:37
    under the special relativistic Paradigm
  • 00:05:40
    where the speed of light has to be
  • 00:05:41
    constant blah blah blah right so they
  • 00:05:43
    came up with this like special case
  • 00:05:44
    scenario for it and then and then in uh
  • 00:05:48
    1918 Paul LaVine came along and made a
  • 00:05:51
    special metric tensor to just to
  • 00:05:54
    describe um the conservation of angular
  • 00:05:57
    momentum on a smaller scale because
  • 00:05:59
    Einstein science field equations are not
  • 00:06:00
    able to uh to account for that on the
  • 00:06:03
    smaller scale right unless you
  • 00:06:05
    specifically have a metric for it like
  • 00:06:07
    your boy Paul Lavine made up and uh not
  • 00:06:09
    not even to get into the
  • 00:06:11
    mathematical side of that where the
  • 00:06:13
    metric that he derived is a first order
  • 00:06:16
    intrinsic invariant differential which
  • 00:06:18
    is the equivalent of like a mathematic
  • 00:06:20
    logical fallacy but to but to not even
  • 00:06:22
    get into that just assume that's on the
  • 00:06:24
    up and up the way that they try to
  • 00:06:26
    explain it through general relativity in
  • 00:06:27
    this metric is that they say that due to
  • 00:06:29
    the rotation of the device that it's
  • 00:06:31
    creating like little pockets of uh time
  • 00:06:33
    dilation and length contraction um so
  • 00:06:36
    that because the device is rotating they
  • 00:06:37
    can't get enough contraction in one in
  • 00:06:40
    one area like they can with Nicholson
  • 00:06:41
    Morley because it's constantly changing
  • 00:06:43
    so with this new metric they're able to
  • 00:06:46
    mathematically extrapolate that there's
  • 00:06:48
    a continual effect due to the rotation
  • 00:06:50
    blah blah blah there's link contraction
  • 00:06:52
    within the device because it's rotating
  • 00:06:54
    so they've solidified the SAG neck
  • 00:06:57
    effect as being due to angular rotation
  • 00:07:00
    so they they save themselves the
  • 00:07:01
    embarrassment of having to explain why
  • 00:07:03
    Nelson morle is a null result and while
  • 00:07:05
    sagn device is a uh produces a friend
  • 00:07:09
    shift pattern showing a varying speed of
  • 00:07:11
    light right now so they went with this
  • 00:07:13
    for years this was like the last 100
  • 00:07:15
    years of physics they've been going off
  • 00:07:16
    of this uh circular or uh attributing
  • 00:07:21
    the snic effect to angular rotation so
  • 00:07:24
    in 2004 Wang comes along and he does an
  • 00:07:27
    experiment with a fi optic gyro and
  • 00:07:30
    conveyor belts and he linearizes the
  • 00:07:33
    effect essentially right so he has a
  • 00:07:34
    instead of a um instead of a circular
  • 00:07:38
    sag neck device he has just a straight
  • 00:07:41
    line just a it's just straight he has a
  • 00:07:43
    conveyor belt he has it going back and
  • 00:07:45
    forth on the conveyor
  • 00:07:47
    belt and he takes he takes his
  • 00:07:49
    measurements and what do you know he
  • 00:07:50
    finds that the sagnik effect is not
  • 00:07:52
    dependent on angular rotation it's
  • 00:07:54
    directionally dependent so when the
  • 00:07:56
    propagation is going east to west or
  • 00:07:58
    west to east that's where you're getting
  • 00:08:00
    your variance and the math equation that
  • 00:08:02
    he used to extrapolate the results so
  • 00:08:04
    he's got this is from his equation here
  • 00:08:06
    so the linearized version is delta T
  • 00:08:09
    equals v2l over c^2 and if we you know
  • 00:08:13
    if we remember back so we got the FR
  • 00:08:15
    shift prediction friend shift prediction
  • 00:08:17
    two times four times so this is times
  • 00:08:20
    the rotational speed so velocity here so
  • 00:08:23
    rotational speed velocity same thing uh
  • 00:08:25
    just different variations of how they're
  • 00:08:27
    looking at it and then the length here
  • 00:08:30
    is equivalent to the area so the length
  • 00:08:31
    of the length of the device in the case
  • 00:08:33
    of the fiberoptic driver he was using
  • 00:08:35
    it's just the length of the cord um and
  • 00:08:38
    then divided by
  • 00:08:39
    c^2 uh and that accurately derives the U
  • 00:08:44
    the prediction for the sagnik effect and
  • 00:08:46
    what he noticed too was that when you
  • 00:08:47
    apply the same equation to a uh circular
  • 00:08:51
    sagn device it actually derives the same
  • 00:08:53
    exact prediction and through GPS what
  • 00:08:57
    was found um let's see if he mentions it
  • 00:08:59
    here want to see if I can get the quote
  • 00:09:02
    correct yeah right here so we found that
  • 00:09:04
    any segment of loop contributes to the
  • 00:09:07
    total phase difference between the
  • 00:09:08
    counterpropagating light beams the con
  • 00:09:11
    the contribution is proportional to the
  • 00:09:13
    product of the moving velocity and the
  • 00:09:15
    projection of the segment length uh
  • 00:09:18
    Delta L on the moving Direction so um
  • 00:09:23
    back in the GPS presentation where I was
  • 00:09:39
    here it is okay yeah so right here um
  • 00:09:44
    with GPS you know same situation with
  • 00:09:46
    the sagic effect preferred Direction and
  • 00:09:48
    all that we have the stationary receiver
  • 00:09:51
    at R1 or noted by R1 and we have a
  • 00:09:53
    moving receiver noted by R2 now when the
  • 00:09:56
    moving receivers um intersects with the
  • 00:10:00
    stationary receiver and a GPS signal is
  • 00:10:02
    sent from either a stationary uh ground
  • 00:10:05
    station or a moving satell or you know
  • 00:10:06
    moving satellite and space whatever is
  • 00:10:08
    transmitting the signals in motion
  • 00:10:10
    doesn't matter the um the distance
  • 00:10:13
    between them at the time that the signal
  • 00:10:14
    is sent is the same but the stationary
  • 00:10:17
    receiver gets the information first and
  • 00:10:20
    the um One In Motion gets it at a slight
  • 00:10:23
    delay and the delay is exactly
  • 00:10:25
    proportional to the Velocity in which
  • 00:10:27
    this guy is moving so uh what um so so
  • 00:10:33
    so and that and that's huge isn't it
  • 00:10:35
    that that that actually last thing you
  • 00:10:36
    said is huge right yeah that's a huge
  • 00:10:39
    aspect of it because the first postulate
  • 00:10:42
    of special relativity is that uh I'm
  • 00:10:45
    sorry the second postulate is that the
  • 00:10:47
    speed of light is the same to observers
  • 00:10:49
    regardless of their relative motion to
  • 00:10:51
    the light source so moving in either
  • 00:10:54
    direction shouldn't affect it so the
  • 00:10:56
    fact that um the fact that Wang
  • 00:11:01
    linearized it in that regard is an
  • 00:11:03
    absolute body bag because what should
  • 00:11:04
    have happened was it shouldn't have
  • 00:11:06
    produced a friend shift pattern if
  • 00:11:07
    Nicholson morle was truly a null result
  • 00:11:09
    and there was an invariant speed of
  • 00:11:11
    light then his linear liic effect
  • 00:11:14
    experiment should have reflected that as
  • 00:11:16
    well it should it shouldn't he got any
  • 00:11:18
    variance it should have been the same
  • 00:11:19
    there should be no fringe
  • 00:11:31
    so yeah 2004 ruong Wang experimentally
  • 00:11:35
    and mathematically destroyed special
  • 00:11:39
    relativity that nobody batted an eyelash
  • 00:11:42
    nobody gave him an award
  • 00:11:44
    nobody did a huge media press conference
  • 00:11:47
    saying that he was the new man or
  • 00:11:49
    anything like that like he didn't get a
  • 00:11:50
    Nobel Prize he doesn't have a bunch of
  • 00:11:51
    research grants wasn't on TV you know or
  • 00:11:55
    anything like that no like literally
  • 00:11:57
    nobody cared
  • 00:11:59
    th is this the same guy that I've seen
  • 00:12:02
    on YouTube from time to time no no no
  • 00:12:06
    okay no I don't I don't think hey fellas
  • 00:12:09
    what's
  • 00:12:10
    up I gotta go all right peace you take
  • 00:12:13
    care of yourself you have you have a
  • 00:12:15
    great wedes today my friend thanks for
  • 00:12:17
    doing this yeah no problem man yeah Al
  • 00:12:21
    Allen's taking us to a different level
  • 00:12:23
    that I don't know who's
  • 00:12:28
    there for
  • 00:13:02
    effect
  • 00:13:55
    effect
  • 00:14:26
    cosy
  • 00:14:34
    [Music]
  • 00:14:44
    Tik to Facebook
  • 00:14:46
    [Music]
Etiquetas
  • Sagnacov efekt
  • relativita
  • Ruang Wang
  • rýchlosť svetla
  • vedecké experimenty
  • fyzika
  • vláknové gyroskopy
  • lineárne varianty
  • uhlová rotácia