Electron Configurations part 2 the rules

00:09:39
https://www.youtube.com/watch?v=JQOhypT9RwQ

Summary

TLDRDans cette vidéo, nous explorons les configurations électroniques, en commençant par l'exemple élémentaire de l'azote. L'azote a un numéro atomique de sept, ce qui signifie qu'il a sept protons et donc, dans un atome neutre, sept électrons. La vidéo utilise l'azote pour illustrer les principes de la configuration électronique sous forme de notation orbitale. Trois règles essentielles sont discutées : le principe de Aufbau, qui consiste à commencer par remplir les niveaux d'énergie les plus bas ; le principe d'exclusion de Pauli, qui stipule qu'aucun électron dans un atome ne peut avoir le même ensemble de quatre nombres quantiques ; et la règle de Hund, qui recommande de remplir toutes les orbitales d'un même sous-niveau avec un électron avant de commencer à les doubler avec un autre électron. L'orbitale 's' contient un seul sous-niveau, 'p' en a trois, 'd' cinq, et 'f' sept. Le tableau périodique est utilisé pour aider à visualiser ces concepts, car il donne une indication du nombre d'électrons (et donc d'orbitales) que chaque série de colonnes peut occuper.

Takeaways

  • 🔬 La configuration électronique commence par les niveaux d'énergie les plus bas.
  • ⚛️ Le principe d'exclusion de Pauli assure l'unicité des électrons dans un atome.
  • ⬆️⬇️ La règle de Hund optimise la disposition des électrons dans des orbitales dédoublées.
  • 🧊 L'azote sert d'exemple clé pour comprendre les configurations simples.
  • 📚 La notation orbitale est essentielle pour illustrer les principes électroniques.
  • 📊 La table périodique est un outil crucial pour comprendre les électrons et orbitales.
  • 🔀 Les orbitales sont des régions probables de localisation d'électrons.
  • 📏 La relation entre nombre de colonnes et d'orbitales s'applique à toute la périodicité.
  • 🔄 Chaque état de spin est unique, dicté par les quatre nombres quantiques.
  • 🔄 S, P, D, F indiquent le nombre d'orbitales en utilisation.

Timeline

  • 00:00:00 - 00:09:39

    Dans cette vidéo, on aborde les configurations électroniques en commençant par un exemple simple : l'azote. On utilise la notation longue pour montrer la disposition des électrons sur différents niveaux d'énergie et orbitaux. Les trois règles abordées sont : le principe de Aufbau, qui conseille de remplir les électrons à partir du niveau d'énergie le plus bas ; le principe d'exclusion de Pauli, qui stipule que chaque orbital peut contenir au maximum deux électrons de spin opposé ; et la règle de Hund, qui favorise le placement d'un électron dans chaque orbital de même énergie avant de doubler les électrons dans un orbital. Enfin, le lien entre les blocs (s, p, d, f) du tableau périodique et les nombres d'orbitales est expliqué.

Mind Map

Mind Map

Video Q&A

  • Quel est le principe de Aufbau?

    Le principe de Aufbau indique que les électrons occupent les niveaux d'énergie les plus bas disponibles avant de remplir des niveaux plus élevés.

  • Comment appliquer le principe d'exclusion de Pauli?

    Le principe d'exclusion de Pauli stipule que chaque électron dans un atome doit avoir un ensemble unique de quatre nombres quantiques.

  • Que dit la règle de Hund?

    La règle de Hund indique que les électrons occupent des orbitales dégénérées avec des spins parallèles avant de se doubler dans les orbitales.

  • Comment sont dessinées les notations orbitales et en quoi diffèrent-elles des configurations électroniques abrégées?

    Les notations orbitales sont souvent dessinées avec des lignes représentant des orbitales et des flèches indiquant les électrons. Elles diffèrent des configurations abrégées qui condensent l'information pour plus de simplicité.

  • Pourquoi l'azote est-il utilisé comme exemple dans cette vidéo?

    L'azote est utilisé parce qu'il a une configuration électronique relativement simple à illustrer avec sept électrons.

  • Qu'est-ce qu'une orbitale dégénérée ?

    Les orbitales dégénérées sont des orbitales de même niveau d'énergie.

  • Comment le tableau périodique aide-t-il à déterminer le nombre d'orbitales?

    Le tableau périodique montre le nombre de colonnes, qui correspondent au nombre d'électrons et donc au nombre d'orbitales nécessaires.

  • Qu'est-ce qu'un électron avec un spin unique signifie en termes d'orbitales?

    Cela signifie qu'un électron a une direction de spin spécifique par rapport à l'autre, assurant qu'ils possèdent des nombres quantiques uniques.

  • Quels sont les symboles de notation des orbites ?

    Les symboles incluent s, p, d, f, chacun indiquant un différent nombre d'orbitales.

  • Comment convertir une configuration électronique en notation orbitaire ?

    La conversion implique de dessiner des lignes ou des boîtes pour représenter chaque orbitale, et de placer des flèches pour indiquer la présence d'électrons avec des spins opposés.

View more video summaries

Get instant access to free YouTube video summaries powered by AI!
Subtitles
en
Auto Scroll:
  • 00:00:00
    okay so let's talk about our actual
  • 00:00:02
    electron configurations I'm going to
  • 00:00:03
    draw a really simple one for you
  • 00:00:06
    one of the simplest ones that we could
  • 00:00:07
    do and then we're going to talk about
  • 00:00:09
    the three rules that go along with that
  • 00:00:11
    and then we're going to do slightly more
  • 00:00:13
    complicated ones as examples later on in
  • 00:00:16
    the next video so that you can see how
  • 00:00:18
    those rules are actually going to play
  • 00:00:20
    out in a bigger setting so we're going
  • 00:00:22
    to start with one that's relatively
  • 00:00:24
    simple and again you need to have your
  • 00:00:25
    periodic table out because obviously
  • 00:00:27
    I've miniaturized mine and I don't have
  • 00:00:29
    the whole thing here so we're to start
  • 00:00:30
    with nitrogen okay and if we went out
  • 00:00:34
    and we found our little chart for
  • 00:00:36
    nitrogen we would see that nitrogen had
  • 00:00:39
    an atomic number of seven and it's got a
  • 00:00:42
    it's got a molar mass sorry an atomic
  • 00:00:45
    weight of something like fourteen point
  • 00:00:46
    oh one or fourteen point zero one or
  • 00:00:49
    something like that so seven is what's
  • 00:00:52
    important to us because that's the
  • 00:00:53
    number of electrons that we have
  • 00:00:55
    remember that seven is actually the
  • 00:00:57
    number of protons but in a neutral atom
  • 00:00:59
    it's going to have an equal number of
  • 00:01:00
    electrons to balance it out and so I'm
  • 00:01:02
    going to draw my electron configuration
  • 00:01:05
    for nitrogen and then I'm going to use
  • 00:01:06
    the model that I've drawn here to
  • 00:01:08
    explain the rules to you the way that
  • 00:01:11
    we're drawing this is what would be
  • 00:01:13
    alternatively called either longhand
  • 00:01:16
    electron configurations are oftentimes
  • 00:01:19
    you would hear it called orbital
  • 00:01:21
    notation instead of longhand electron
  • 00:01:24
    configuration so what these little boxes
  • 00:01:27
    are here and sometimes you'll see them
  • 00:01:28
    drawn if you'll see them drawn in a book
  • 00:01:31
    a textbook or something like that
  • 00:01:32
    they would actually be drawn out as
  • 00:01:34
    little boxes like that
  • 00:01:36
    that's not really practical for us when
  • 00:01:38
    you're writing a whole lot of them so
  • 00:01:39
    usually we're just going to draw dashed
  • 00:01:41
    lines each one of those lines represents
  • 00:01:44
    an orbital okay and remember an orbital
  • 00:01:47
    is a region in space where we have a
  • 00:01:48
    good probability of finding a given
  • 00:01:50
    electron and so I know that I have seven
  • 00:01:53
    electrons here and so I'm gonna put my
  • 00:01:55
    seven electrons in in such a fashion to
  • 00:02:00
    draw the correct orbital notation of our
  • 00:02:04
    nitrogen so all the pink arrows there
  • 00:02:08
    are electrons and you'll see that I have
  • 00:02:10
    seven of them and I've sort of a rain
  • 00:02:12
    them in a certain way and I sort of
  • 00:02:14
    started to draw the path in a certain
  • 00:02:15
    way and so I'm gonna give you the rules
  • 00:02:17
    that I used to do that and then in the
  • 00:02:19
    next video we'll work a couple more
  • 00:02:21
    examples so you can see a little bit
  • 00:02:22
    more about how to draw them out in this
  • 00:02:24
    way and by the way we don't usually draw
  • 00:02:27
    them out in this way you'll see them a
  • 00:02:28
    couple of times this way but most of the
  • 00:02:30
    time we draw them in a much more
  • 00:02:31
    condensed fashion and we'll get to that
  • 00:02:33
    probably in our third video here so what
  • 00:02:36
    are the rules that we're gonna use for
  • 00:02:37
    this will rule number one it's called
  • 00:02:41
    the Alpha Belle principle okay the Alpha
  • 00:02:48
    Belle principle there's always these
  • 00:02:52
    really important complicated scientific
  • 00:02:55
    definitions for them and I'll pop those
  • 00:02:57
    up in the video for you but what the
  • 00:02:58
    alto principle really says and when it
  • 00:03:00
    boils down to like simple and the
  • 00:03:02
    liminal person speak is start at the
  • 00:03:04
    bottom okay remember that if we were
  • 00:03:07
    drawing this in some sort of like Bohr
  • 00:03:09
    model structure here that this would be
  • 00:03:11
    energy level one and this would be
  • 00:03:13
    energy level two and there's a nucleus
  • 00:03:15
    here and so you're gonna you want to
  • 00:03:17
    start filling your electrons closest to
  • 00:03:19
    the nucleus the lowest energy electrons
  • 00:03:21
    are gonna be closest to the nucleus and
  • 00:03:23
    what the Alpha Bal principle then tells
  • 00:03:25
    us is start from the bottom so when I
  • 00:03:27
    started putting my electrons in here I
  • 00:03:30
    started at the 1s I went to 2s and then
  • 00:03:34
    I went to 2p and then I would go to 3s
  • 00:03:36
    and 3p and so on and so forth like we'll
  • 00:03:39
    do in the next part of the video so the
  • 00:03:41
    Alpha Bell principle says start at the
  • 00:03:43
    bottom and again I'll pop up the more
  • 00:03:45
    complicated definition for you but
  • 00:03:48
    really that's that's essentially what it
  • 00:03:50
    comes down to them you know it says hey
  • 00:03:51
    you want to be you want to start at the
  • 00:03:53
    lowest energy levels and go to the
  • 00:03:55
    higher ones for us it means start at the
  • 00:03:57
    bottom what that also means is that when
  • 00:03:59
    you're drawing these out and this is
  • 00:04:00
    gonna be tough for some of you don't
  • 00:04:02
    start with 1s at the top and go that way
  • 00:04:04
    start with 1s at the bottom and go the
  • 00:04:06
    other way that just tends to be the way
  • 00:04:08
    they're drawing sometimes an alternative
  • 00:04:11
    method would also be that we could have
  • 00:04:13
    drawn them out and said 1s 2s we would
  • 00:04:16
    have drawn them in a straight line left
  • 00:04:18
    to right because that's the way we would
  • 00:04:19
    normally read things and that way can be
  • 00:04:22
    useful that's actually pretty close to
  • 00:04:23
    what we're gonna do in shorthand here in
  • 00:04:24
    a little bit but this is traditional
  • 00:04:26
    orbital notation because this sort of
  • 00:04:28
    really lets you know that this is lowest
  • 00:04:30
    next lowest highest energy level for
  • 00:04:33
    this particular atom and that's
  • 00:04:34
    important
  • 00:04:35
    okay so rule number two is the Pauli
  • 00:04:37
    exclusion principle that sounds really
  • 00:04:40
    complicated the actual like one again
  • 00:04:43
    the complicated scientific definition of
  • 00:04:45
    it is a lot more complicated basically
  • 00:04:46
    the Pauli exclusion principle says hey
  • 00:04:49
    every electron has a unique set of four
  • 00:04:53
    quantum numbers and no two electrons in
  • 00:04:56
    the same atom can have the same four
  • 00:04:58
    quantum numbers and what that would mean
  • 00:05:00
    is that there always has to be a spin to
  • 00:05:02
    them and you're like whoa what what does
  • 00:05:04
    all that mean it doesn't really matter
  • 00:05:05
    that much for us at the moment what that
  • 00:05:07
    means for us in terms of actually
  • 00:05:09
    writing our electron configurations
  • 00:05:11
    again the easy speaker the normal person
  • 00:05:13
    speak would be the Pauli exclusion
  • 00:05:15
    principle tells us that you can only fit
  • 00:05:17
    two electrons in an orbital and that
  • 00:05:20
    when you put two electrons in the
  • 00:05:22
    orbital the first one always goes up and
  • 00:05:24
    the second one always goes down that
  • 00:05:26
    means that they can't have the same spin
  • 00:05:27
    electrons are spinning and so we're
  • 00:05:29
    saying this way that one's spinning this
  • 00:05:31
    way the other one's spinning the other
  • 00:05:32
    way okay and again we're not getting in
  • 00:05:35
    at all the quantum mechanics of that but
  • 00:05:36
    that's essentially what the Pauli
  • 00:05:37
    exclusion principle tells us at our
  • 00:05:40
    level that we're worried about which is
  • 00:05:42
    I can only fit two electrons in each of
  • 00:05:44
    the orbitals that I'm gonna set up okay
  • 00:05:48
    so that's rule number two rule number
  • 00:05:50
    three is hummed rule and what hund's
  • 00:05:52
    rule tells us is that if we have
  • 00:05:54
    orbitals that are on the same energy
  • 00:05:57
    level so remember that I said that alpha
  • 00:06:00
    principle says that we start at the
  • 00:06:01
    bottom lowest energy so 1s is at an
  • 00:06:03
    energy level and then 2's is at a
  • 00:06:05
    different energy level and 2p is higher
  • 00:06:07
    than that but within 2p we have three
  • 00:06:11
    orbitals okay that are all at the exact
  • 00:06:15
    same energy level okay
  • 00:06:18
    those have a specific name we call those
  • 00:06:20
    degenerate orbitals meaning that they're
  • 00:06:21
    all orbitals at the same energy and what
  • 00:06:24
    hund's rule says is that if you're
  • 00:06:26
    putting electrons into degenerate
  • 00:06:28
    orbitals that what would be most
  • 00:06:30
    favorable is that if you maximize the
  • 00:06:34
    number of electrons with the same spin
  • 00:06:35
    and you're like again what what does
  • 00:06:38
    that mean that's sort of the more
  • 00:06:40
    complicated
  • 00:06:40
    definition what hugs rule really says
  • 00:06:42
    for us is that when you're putting
  • 00:06:44
    electrons into degenerate or the same
  • 00:06:46
    level boxes that you put one in each
  • 00:06:50
    before you go back and put the second
  • 00:06:53
    electron in any of the boxes so the plot
  • 00:06:55
    exclusion principle tells me I can't put
  • 00:06:56
    more than two in a box but hund's rule
  • 00:06:59
    tells me that sometimes I put one in
  • 00:07:01
    each box before I then go back and put
  • 00:07:04
    the second one in so this is a nitrogen
  • 00:07:05
    if we were if we had an oxygen let me
  • 00:07:08
    write that up there this is nitrogen if
  • 00:07:10
    we had an oxygen say and I had an eighth
  • 00:07:13
    electron remember oxygen is the next
  • 00:07:15
    element over from nitrogen we had an
  • 00:07:17
    eighth electron then I would go back in
  • 00:07:19
    and I would have done my huns role and
  • 00:07:21
    then I would come back and fill in my
  • 00:07:23
    eighth electron there and then fluorine
  • 00:07:25
    would be nine and neon would be ten and
  • 00:07:28
    so on and so forth okay so one more
  • 00:07:32
    quick thing because you might have been
  • 00:07:33
    saying okay that's great I understand
  • 00:07:35
    what you're saying about degenerate
  • 00:07:37
    orbitals being those in the same level
  • 00:07:39
    why does s have one and P has three how
  • 00:07:42
    many did D and F have so real quick just
  • 00:07:44
    let me tell you what each of those
  • 00:07:46
    things are just to make sure that
  • 00:07:49
    everybody is okay with that so they work
  • 00:07:51
    like this s P D F okay s always has one
  • 00:07:56
    orbital P always has three D always has
  • 00:08:01
    five guess what s f has seven if we went
  • 00:08:06
    to a G or an H which again are
  • 00:08:07
    theoretically possible and then we would
  • 00:08:09
    have nine and 11 and so on and so forth
  • 00:08:12
    and again there's a quantum number
  • 00:08:13
    reason behind that that does it that is
  • 00:08:15
    really deeper than we need to go right
  • 00:08:17
    now but what's important to us is this
  • 00:08:19
    tells us how many boxes each of these
  • 00:08:22
    get now here's the beauty of this you
  • 00:08:25
    could memorize this and that will work
  • 00:08:26
    just fine but the periodic table itself
  • 00:08:28
    actually leads you to all of that stuff
  • 00:08:31
    if you look at the periodic table and
  • 00:08:33
    what I said was the s-block before there
  • 00:08:36
    are two two columns there which means
  • 00:08:39
    that I can only fit two electrons okay
  • 00:08:42
    each column is an electron and so if I
  • 00:08:45
    can only fit two electrons that means I
  • 00:08:47
    only need one orbital because each
  • 00:08:48
    orbital holds two electrons if I go over
  • 00:08:51
    to the P there are six
  • 00:08:53
    columns there okay and look at your
  • 00:08:55
    periodic table right now there are six
  • 00:08:57
    columns there six columns six electrons
  • 00:09:01
    means that I need three orbitals to hold
  • 00:09:03
    that D has ten F has 14 most of the time
  • 00:09:07
    you're like most of the time what does
  • 00:09:09
    that mean well on some periodic tables
  • 00:09:11
    they'll take since the F block goes
  • 00:09:13
    right here
  • 00:09:13
    they'll pull that down and they'll sort
  • 00:09:16
    of put the d1 there and we're not going
  • 00:09:18
    to worry about that at the moment but
  • 00:09:20
    again you could just look at the
  • 00:09:22
    periodic table to be able to figure out
  • 00:09:23
    how many boxes and boxes of course I
  • 00:09:26
    mean orbitals go in each one of them
  • 00:09:29
    okay so that's the basics we're gonna
  • 00:09:31
    work some more complicated ones in the
  • 00:09:33
    next video and then we'll talk about how
  • 00:09:34
    to condense this down to a smaller
  • 00:09:36
    version in the video after that thanks
  • 00:09:38
    kiddos
Tags
  • configuration électronique
  • principe de Aufbau
  • principe d'exclusion de Pauli
  • règle de Hund
  • notation orbitale
  • azote
  • orbitales
  • électrons
  • tableau périodique
  • spins opposés